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Binary Response Models

1 Introduction

Many dependent variables of interest in economics and other social sci-

ences can only take two values. The two possible outcomes are usually

denoted by 0 and 1. Such variables are called dummy variables or di-

chotomous variables. Some examples:

• The labor market status of a person. The variable takes the value

1 if a person is employed and 0 if he is unemployed. The values 1

and 0 can be assigned arbitrarily.

• Voting behavior of a person. The variable takes 1 if the person votes

in favor of a new policy and 0 otherwise. Again the values 1 and 0

are arbitrary.

The expected value of a dichotomous variable yi ∈ {0, 1} is the probability

that it takes the value 1:

E(yi) = 0 · P (yi = 0) + 1 · P (yi = 1) = P (yi = 1) .

The linear regression model,

yi = x′iβ + vi, E(vi|xi) = 0

is called linear probability model in this context. This linear model is not

an adequate statistical model as the expected value E(yi|xi) = x′iβ can lie

outside [0,1] and does not represent a probability. In addition, the error

term is heteroscedastic as V (vi|xi) = x′iβ(1− x′iβ) depends on xi.
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2 The Econometric Model: Probit and Logit

Binary response models directly describe the response probabilities

P (yi = 1) of the dependent variable yi.

Consider a sample of N independently and identically distributed

(i.i.d.) observations i = 1, ... , N of the dependent dummy variable yi

and a (K+1)-dimensional vector x′i of explanatory variables including a

constant. The probability that the dependent variable takes value 1 is

modeled as

P (yi = 1|xi) = F (zi) = F (x′iβ)

where β is a (K + 1)-dimensional column vector of parameters and

zi = x′iβ

is a single linear index. The function F maps the single index into [0,1]

and satisfies in general

F (−∞) = 0, F (∞) = 1, ∂F (z)/∂z > 0.

The probit model assumes that the transformation function F is the

cumulative distribution function (cdf) of the standard normal distribu-

tion. The response probabilities are then

P (yi = 1|xi) = Φ (x′iβ) =

x′
iβ∫

−∞

φ(t) dt =

x′
iβ∫

−∞

1√
2π
e−

1
2 t

2

dt

where φ(.) is the pdf and Φ(.) the cdf of the standard normal distribution.

In the logit model, the transformation function F is the logistic func-

tion. The response probabilities are then

P (yi = 1|xi) =
ex

′
iβ

1 + ex
′
iβ

=
1

1 + e−x
′
iβ

Figure 1 shows the transformation function F for the two models.

Note: The Logit and Probit model are almost identical and the choice

of the model is usually arbitrary. However, the parameters β of the two
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Figure 1: Mapping of the linear index zi in the probit model, the logit

model and the rescaled logit model (factor 1.6).

models are scaled differently. Multiplying the parameters in the probit

model by 1.6 are approximately the same as the logit estimates.1

3 Latent Variable Model

There is an alternative interpretation that gives rise to the probit (and

analogously the logit) model. Consider a latent variable which is not

observed by the researcher and linearly depends on xi

y∗i = x′iβ + ui, E(ui|xi) = 0

1The factor 1.6 is derived from equating the first derivative of F in the probit

model with the one in the rescaled logit model. This is the appropriate rescaling for

the marginal effect of the average type. An alternative approach is to equate the

standard deviation of the distribution for which F is the cdf. For the probit model the

standard deviation is 1 and for the logit model π/
√

3 ∼= 1.81.
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Figure 2: The probit model with a latent variable. N = 30, K = 2,

β0 = −2 and β1 = 0.5.

The latent variable y∗i can be interpreted as the utility difference between

choosing yi = 1 and 0. In is then called a random utility model.
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Only the choice yi is observed by the researcher. An individual chooses

yi = 1 if the latent variable is positive and 0 otherwise, hence the observed

variable is

yi =

{
1 if y∗i > 0

0 if y∗i ≤ 0

Furthermore, assume that the individual observations (xi, yi) are i.i.d.,

that the explanatory variables are exogenous and that the error term is

normally distributed and homoskedastsic

ui|xi ∼ N(0, σ2)

The probability that individual i chooses yi = 1 can now be derived

from the latent variable and the decision rule, i.e.

P (yi = 1|xi) = P (y∗i > 0|xi) = P (x′iβ + ui > 0|xi) = P (ui > −x′iβ|xi)

= 1− Φ(−x′iβ/σ) = Φ(x′iβ/σ).

The probit model arises when σ2 is set to unity.

Note: βk and σ are not separately identified as only the ratio βk/σ can

be estimated. Figure 2 visualizes the latent variable model.

4 Interpretation of the Parameters

Different from the linear regression model, the parameters β cannot di-

rectly be interpreted as marginal effects on the dependent variable yi. In

some situations, the index function zi = x′iβ has a clear interpretation in

a theoretical model and the marginal effect βk of a change in the inde-

pendent variable xik on y∗i is meaningful. Even then, the marginal effect

is only identified if there is reason to set σ2 to unity.

In general, we are interested in the marginal effect of a change in xik

on the expected value of the observed variable yi, i.e.

Probit:
∂E(yi|xi)
∂xik

=
∂P (yi = 1|xi)

∂xik
= φ (x′iβ)βk

Logit:
∂E(yi|xi)
∂xik

=
∂P (yi = 1|xi)

∂xik
=

ex
′
iβ(

1 + ex
′
iβ
)2 βk
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This marginal effect depends on the values of all explanatory variables

xik for observation i. Therefore, any individual has a different marginal

effect. There are several ways to summarize and report the information

in the model. A first possibility is to present the marginal effects for

the “mean type”, i.e. xi = x̄i , the “median type”, or some interesting

extreme types. A second approach is to calculate the marginal effects for

all observations in the sample and report the mean of the effects.

The estimated model can also be used for predictions

Probit: P̂ (yi = 1|xi) = Φ(x′iβ̂)

Logit: P̂ (yi = 1|xi) =
ex

′
iβ̂

1 + ex
′
iβ̂

For a discrete explanatory variable xik it is more accurate to report the

effect of a discrete change ∆xik. The discrete effect of a dummy variable

xik changing from 0 to 1 is estimated as

∆̂P = P̂ (yi = 1|..., xik = 1, ...)− P̂ (yi = 1|..., xik = 0, ...)

and depends on the values of all other explanatory variables xi`, ` 6= k.

Predictions can also be aggregated to, for example, the predicted num-

ber of observations with yi = 1. There are two prediction methods for this

aggregate: (1) assume ŷi = 1 if P̂i > 0.5 and calculate
∑
i ŷi or (2) sum

the predicted choice probabilities
∑
i P̂ (yi = 1|xi). The two measures can

be contrasted to the actual numbers. Method 1 also allows to compare

actual and predicted outcomes for any observation. It is also often in-

teresting to report and contrast predicted numbers for certain types of

individuals.
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5 Estimation with Maximum Likelihood

The probit and logit models are estimated by maximum likelihood (ML).

Assuming independence across observations, the likelihood function is

L =
∏

{i|yi=0}

P (yi = 0|xi)
∏

{i|yi=1}

P (yi = 1|xi)

=

N∏
i=1

[1− F (zi)]
1−yiF (zi)

yi

where P (yi = 1|xi) = F (zi) = Φ(zi) in the probit model and P (yi =

1|xi) = F (zi) = ezi/(1 + ezi) in the logit model. The corresponding log

likelihood function is

logL =

N∑
i=1

[(1− yi) log (1− F (zi)) + yi logF (zi)]

The first order conditions for an optimum are in general, for all k including

a constant xi0 = 1

∂ logL
∂βk

=

N∑
i=1

[
(1− yi)

−f (zi)

1− F (zi)
+ yi

f (zi)

F (zi)

]
xik = 0

where f(z) ≡ ∂F (z)/∂z. This simplifies in the probit model to

∂ logL
∂βk

=
∑

{i|yi=0}

−φ (zi)

1− Φ (zi)
xik +

∑
{i|yi=1}

φ (zi)

Φ (zi)
xik = 0

and in the logit model to

∂ logL
∂βk

=

N∑
i=1

(
yi −

ezi

1 + ezi

)
xik = 0.

There is no analytical solution to these FOCs and numerical optimization

routines are used. The log likelihood function can be shown to be glob-

ally concave for both models and numerical routines converge well to the

unique global maximum.
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The ML estimator of β is consistent and asymptotically normally dis-

tributed. The approximate distribution in large samples is

β̂
A∼ N (β,Avar(β))

where Avar(β) is estimated by one of the standard ML procedures (inverse

expected H, inverse Hessian, BHHH, or Eicker-Huber-White-Sandwich).

Asymptotic hypothesis tests are performed as Wald, likelihood ratio or

lagrange multiplier tests.

The ML estimation of the probit model (and analogously the logit

model) rests on the strong assumption that the latent error term is nor-

mally distributed and homoscedastic. The ML estimator is inconsistent

in the presence of heteroscedasticity and robust (sandwich) covariance es-

timators cannot solve this. Several semi-parametric estimation strategies

have been proposed that relax the distributional assumption about the

error term. See Horowitz and Savin (2001) for an introduction and Gerfin

(1996) for a nice comparison of different estimators.

6 Estimation with OLS

Despite the logical inconsistency of the linear probability model, OLS

can be used to estimate binary choice models. OLS is then called the

linear probability model (LPM). The estimated OLS slope coefficients are

estimates for the average marginal effects of the true non-linear model.

In practice, the OLS slope coefficients will be very similar to the average

marginal effects calculated after probit or logit estimation. However, it

is very important to report robust (Eicker-Huber-White) standard errors

because of the intrinsic heteroscedasticity of the linear probability model.

The linear probability model has in practice several advantages over

probit or logit estimation: it is easier to calculate, the parameters are

directly interpretable, fixed effects and instrumental variables estimators

can easily be implemented. Note that adding fixed effects as dummy

variables in the probit or logit model will yield biased estimates.
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7 Implementation in Stata 17

The probit and logit model are estimated with the probit and, respec-

tively, logit command. For example, load data

webuse auto.dta

and estimate the effect of the explanatory variables weight and mpg on

the dependent dummy variable foreign with the probit model

probit foreign weight mpg

or the logit model

logit foreign weight mpg

Stata reports the inverse hessian matrix as default covariance estimator.

The sandwich covariance estimator is reported with

probit foreign weight mpg, vce(robust)

Response probabilities are estimated for each observation with the post-

estimation command predict:

predict p_foreign, pr

Marginal effects for specific types are calculated with the post-estimation

command margins. For example, the marginal effects for a car with

weight of 2000 lbs. and 40 mpg is reported by

margins, dydx(*) at(weight = 2000 mpg = 40)

The marginal effects for the mean type, e.g. a car with average weight

and mpg, are calculated with

margins, dydx(*) atmeans

If explanatory dummy variables are defined as factor variables, Stata re-

ports exact discrete effect.

Average marginal effects in the estimation sample are calculated by

margins, dydx(*)
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8 Implementation in R 4.3.1

The probit and logit model are estimated with the command glm which

fits generalized linear models. For example, load data

library(haven)
auto <- read_dta("https://www.stata-press.com/data/r17/auto.dta")

and estimate the effect of the explanatory variables weight and mpg on

the dependent dummy variable foreign with the probit model

probit <- glm(foreign~weight+mpg, family=binomial(link=probit),
data=auto)

summary(probit)

or the logit model

logit <- glm(foreign~weight+mpg, family=binomial(link = "logit"),
data=auto)

summary(logit)

R reports the inverse hessian matrix as default covariance estimator. The

sandwich covariance estimator is reported with

library(sandwich)
coeftest(probit, vcov=sandwich)

Response probabilities are estimated for each observation with predict:

p_foreign <- predict(probit,type=c("response"))

The R package margins offers a convenient way to calculate marginal

effects. For example, the marginal effects for a car with weight of 2000

lbs. and 40 mpg are calculated with

library(margins)
margins(probit, at = list(weight=2000, mpg=40))

Tests and confidence bounds for maginal effects are reported with

mfx <- margins(probit, at = list(weight=2000, mpg=40))
summary(mfx)

Average marginal effects in the estimation sample are calculated by

margins(probit)
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