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1 Introduction

This handout extends the handout on “The Multiple Linear Regression

model” and refers to its definitions and assumptions in section 2. It relaxes

the homoscedasticity assumption (OLS4a) and allows the error terms to

be heteroscedastic and correlated within groups or so-called clusters. It

shows in what situations the parameters of the linear model can be consis-

tently estimated by OLS and how the standard errors need to be corrected.

The canonical example (Moulton 1986, 1990) for clustering is a regres-

sion of individual outcomes (e.g. wages) on explanatory variables of which

some are observed on a more aggregate level (e.g. employment growth on

the state level).

Clustering also arises when the sampling mechanism first draws a ran-

dom sample of groups (e.g. schools, households, towns) and than surveys

all (or a random sample of) observations within that group. Stratified

sampling, where some observations are intentionally under- or oversam-

pled asks for more sophisticated techniques.

2 The Econometric Model

Consider the multiple linear regression model

ygi = β0 + β1xgi1 + ...+ βKxgiK + ugi

where observations belong to a cluster g = 1, ..., G and observations are

indexed by i = 1, ...,M within their cluster. G is the number of clusters,
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M is the number of observations per cluster, and N =
∑

gM = GM is

the total number of observations. For notational simplicity, M is assumed

constant in this handout. It is easily generalized to a cluster specific

numberMg. ygi is the dependent variable, xgi1, ..., xgiK areK explanatory

variables, β0, ..., βK are K + 1 parameters, and ugi is the error term.

The data generation process (dgp) is fully described by:

CL1: Linearity

ygi = β0 + β1xgi1 + ...+ βKxgiK + ugi and E[ugi] = 0

CL2: Independence

{xg11, ..., xgMK , yg1, ..., ygM}Gg=1

i.i.d. (independent and identically distributed)

CL2 assumes that the observations in one cluster are independent from

the observations in all other clusters. It does not assume independence of

the observations within clusters.

CL3: Strict Exogeneity

a) ugi|xg11, ..., xgMK ∼ N(0, σ2
gi)

b) ∀j, k : ugi ⊥ xgjk (independent)

c) E[ugi|xg11, ..., xgMK ] = 0 (mean independent)

d) ∀k, j : Cov[xgjk, ugi] = 0 (uncorrelated)

CL3 assumes that the error term ugi is unrelated to all explanatory vari-

ables of all observations within its cluster.

CL4: Clustered Errors

V [ugi|xg11, ..., xgMK ] = σ2
gi > 0 and <∞

Cov[ugi, ugj |xg11, ..., xgMK ] = ρgijσgiσgj <∞, for all i 6= j

CL4 means that the error terms are allowed to have different variances and

to be correlated within clusters conditional on all explanatory variables
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of all observations within the cluster.

Under CL2, CL3c and CL4, the conditional variances and covariances

across all error terms are

V (ugi|xg11, ..., xgMK) = σ2
gi

Cov(ugi, ugj |xg11, ..., xgMK) = ρgijσgiσgj , i 6= j

Cov(ugi, uhj |xg11, ..., xgMK , xh11, ..., xhMK) = 0, i 6= j, g 6= h

CL5: Identifiability

(1, xgi1, · · · , xgiK) are not linearly dependent

0 < V [xgik] <∞ and 0 < V̂ [xgik]

CL5 assumes that the regressors have identifying variation (non-zero vari-

ance) and are not perfectly collinear.

3 A Special Case: Random Cluster-specific Effects

Suppose as Moulton(1986) that the error term ugi consists of a cluster

specific random effect cg and an individual effect vgi

ugi = cg + vgi

Assume that the individual error term is strictly exogenous, homoscedastic

and independent across all observations

E[vgi|xg11, ..., xgMK ] = 0

V [vgi|xg11, ..., xgMK ] = σ2
v

Cov[vgi, vgj |xg11, ..., xgMK ] = 0, i 6= j

and that the cluster specific effect is exogenous, homoscedastic and un-

correlated with the individual effect
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E[cg|xg11, ..., xgMK ] = 0

V [cg|xg11, ..., xgMK ] = σ2
c

Cov[cg, vgi|xg11, ..., xgMK ] = 0

The resulting variances and covariances of the combined error term

ugi = cg + vgi are then within each cluster g

V [ugi|xg11, ..., xgMK ] = σ2
u

Cov[ugi, ugj |xg11, ..., xgMK ] = ρuσ
2
u, i 6= j

where σ2
u = σ2

c + σ2
v and ρu = σ2

c/(σ
2
c + σ2

v). This structure is called

equicorrelated errors. In a less restrictive version, σ2
u and ρu are allowed

to be cluster specific as a function of xg11, ..., xgMK .

Note: this structure is formally identical to a random effects model for

panel data with many “individuals” g observed over few “time periods”i.

The cluster specific random effect is also called an unrelated effect.

4 Estimation with OLS

The parameter β can be estimated with OLS by regressing ygi on a con-

stant and on xgi1, · · · , xgiK . In the special case with one regressor xgi,

the resulting OLS estimators of β0 and β1 are:

β̂1 =

∑G
g=1

∑M
i=1(xgi − x̄)(ygi − ȳ)∑G

g=1

∑M
i=1(xgi − x̄)2

β̂0 = ȳ − β̂1x̄

where ȳ = 1/GM
∑

g

∑
i ygi and x̄ = 1/GM

∑
g

∑
i xgi.

The OLS estimator of β remains unbiased in small samples under

CL1, CL2, CL3c, CL4, and CL5 and normally distributed additionally

assuming CL3a. It is consistent and approximately normally distributed
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under CL1, CL2, CL3d, CL4, and CL5 in samples with a large number

of clusters. However, the OLS estimator is not efficient any more. More

importantly, the usual standard errors of the OLS estimator and tests (t-,

F -, z-, Wald-) based on them are not valid any more.

5 Estimating Correct Standard Errors

The small sample variance V (β̂K |x111, ..., xGMK) of β̂K differs from the

usual OLS one under CL3c and CL4. This cannot be easily expressed

without matrix notation even for the binary regression model. Con-

sequently, the usual estimator V̂ (β̂k|x111, ..., xGMK) is incorrect. Usual

small sample test procedures, such as the F - or t-Test, based on the usual

estimator are therefore not valid.

With the number of clusters G → ∞ and fixed cluster size M =

N/G, the OLS estimator is asymptotically normally distributed under

CL1, CL2, CL3d, CL4, and CL5
√
G(β̂k − βk)

d−→N
(
0, ς2

)
where ς2 is not easily expressed without matrix notation. The OLS esti-

mator is therefore approximately normally distributed in samples with a

large number of clusters

β̂k
A∼ N

(
βk, Avar(β̂k)

)
where Avar(β̂k) = ς2/N can be consistently estimated with some addi-

tional assumptions on higher order moments of xg11, ..., xgMK . For the

binary regression, the robust variance estimator is calculated as

Âvar(β̂1) =

∑G
g=1

∑M
i=1

∑M
j=1 ûgiûgj(xgi − x̄)(xgj − x̄)[∑G

g=1

∑M
i=1(xgi − x̄)2

]2
This so-called cluster-robust covariance matrix estimator is a gener-

alization of Huber(1967) and White(1980).1 It does not impose any re-

1 Note: the cluster-robust estimator is not clearly attributed to a specific author.
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strictions on the form of both heteroscedasticity and correlation within

clusters (though we assumed independence of the error terms across clus-

ters). We can perform the usual z- and Wald-test for large samples using

the cluster-robust covariance estimator.

Note: the cluster-robust covariance matrix is consistent when the num-

ber of clusters G→∞. In practice we should have at least 50 clusters.

Bootstrapping is an alternative method to estimate a cluster-robust

covariance matrix under the same assumptions. See the handout on “The

Bootstrap”. Clustering is addressed in the bootstrap by randomly draw-

ing clusters g (rather than individual observations gi) and taking all M

observations for each drawn cluster. This so-called block bootstrap pre-

serves all within cluster correlation. With 20 to 50 clusters, a wild block

residual bootstrap-t should be used (Cameron and Miller, 2015).

6 Efficient Estimation with GLS

In some cases, for example with cluster specific random effects, we can es-

timate β efficiently using feasible GLS (see the handout on “Heteroscedas-

ticity in the Linear Model” and the handout on “Panel Data”). In prac-

tice, we can rarely rule out additional serial correlation beyond the one

induced by the random effect. It is therefore advisable to always use

cluster-robust standard errors in combination with FGLS estimation of

the random effects model.
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7 Special Case: Estimating Correct Standard Errors

with Random Cluster-specific Effects

Moulton (1986, 1990) studies the bias of the usual OLS standard errors

for the special case with random cluster-specific effects. Assume cluster-

specific random effects in a bivariate regression:

ygi = β0 + β1xgi + ugi

where ugi = cg + vgi with σ2
u = σ2

c + σ2
v , ρu = σ2

c/(σ
2
c + σ2

v). Then the

(cluster-robust) asymptotic variance can be estimated as

Âvarcluster[β̂1] =
σ̂2
u∑G

g=1

∑M
i=1(xgi − x̄)2

[1 + (M − 1)ρ̂xρ̂u]

where σ̂2
u is the usual OLS estimator, ρx is the within cluster correlation of

x. σ̂2, ρ̂u and ρ̂x are consistent estimators of σ2, ρu and ρx, respectively.

The robust standard error for the slope coefficient is accordingly

ŝecluster(β̂1) = ŝeols(β̂1)
√

1 + (M − 1)ρ̂xρ̂u

where ŝeols[β̂1] is the usual OLS standard error.√
1 + (M − 1)ρxρu] > 1 is called the Moulton factor and measures

how much the usual OLS standard errors understate the correct standard

errors. For example, with cluster size M = 500 and intracluster correla-

tions ρu = 0.1 and ρx = 0.1, the correct standard errors are 2.45 times

the usual OLS ones.

Lessons from the Moulton factor

1. If either the within cluster correlation of the combined error term u

is zero (ρu = 0) or the within cluster correlation of x is zero (ρx = 0),

then the Moulton factor is 1 and the usual OLS standard errors are

correct. Both situations generalize to K explanatory variables.
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2. If the variable of interest is an aggregate variable on the level of the

cluster (hence ρx = 1), the Moulton factor is maximal. This case

generalizes to K aggregate explanatory variables:

ŝecluster(β̂k) = ŝeols(β̂k)
√

1 + (M − 1)ρ̂

In this situation, we need to correct the standard errors. Alterna-

tively, we could aggregate (average) all variables and run the regres-

sion on the collapsed data.

3. If only control variables are aggregated, we better include cluster

fixed effects (i.e. dummy variables for the groups) which will take

care of the cluster-specific effect. See also the handout on “Panel

Data: Fixed and Random Effects”.

4. If the variable of interest is not aggregated but has an important

cluster specific component (large ρx), then including cluster fixed

effects may destroy valuable information and we better don’t in-

clude cluster fixed effects. However, we need to correct the standard

errors.

5. If only control variables have an important cluster-specific compo-

nent, it is better to include cluster fixed effects.

6. If the variable of interest has only a small cluster specific component

(i.e. a lot of within-cluster variation and very little between-cluster

variation), it is better to include cluster fixed effects.

Standard errors are in practice most easily corrected using the Eicker-

Huber-White cluster-robust covariance from section 5 and not via the

Moulton factor. Note that we should have at least G = 50 clusters to

justify the asymptotic approximation.

In the context of panel and time series data, serial correlation beyond

the ones from a random effect becomes very important. See the handout

on “Panel Data: Fixed and Random Effects”. In this case, standard errors

need to be corrected even when including fixed effects.
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8 Implementation in Stata 17

Load example data

webuse auto7.dta

Stata reports the cluster-robust covariance estimator clustered for

manufacturer with the vce(cluster) option, e.g.2

regress price weight, vce(cluster manufacturer)
matrix list e(V)

Note: Stata multiplies V̂ with (N − 1)/(N −K − 1) ·G/(G− 1) to “cor-

rect” for degrees of freedom in small samples. This practice is not based

on asymptotic theory but often produces better small sample properties.

Stata reports p-values for the t- and F -statistics with G − 1 degrees of

freedom.

We can also estimate a cluster robust covariance using a nonparametric

block bootstrap. For example with either of the following,

regress price weight, vce(bootstrap, reps(999) cluster(manufacturer))
bootstrap, reps(999) cluster(manufacturer): regress price weight

The cluster specific random effects model is efficiently estimated by

FGLS. For example,

xtset manufacturer_grp
xtreg price weight, re

In addition, cluster-robust standard errors are reported with

xtreg price weight, re vce(cluster manufacturer)

The wild block residual bootstrap-t for the slope coefficient of the

variable weight is reported by David Roodman’s command boottest

ssc install boottest
regress price weight, vce(cluster manufacturer)
boottest weight=0, reps(99999)

2 There are only 23 clusters in this example dataset used by the Stata manual. This

is not enough to justify using large sample approximations.
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9 Implementation in R 4.3.1

Load example data

library(haven)
auto <- read_dta("http://www.stata-press.com/data/r17/auto7.dta")

First, we estimate the regression with the usual command

ols <- lm(price~weight, data=auto)
summary(ols)

The cluster-robust covariance estimator clustered for manufacturer is

calculated and reported with the packages sandwich and lmtest3

library(sandwich)
library(lmtest)
coeftest(ols, vcov = vcovCL, cluster = ~manufacturer)

The following commands are equivalent

coeftest(ols, vcov = vcovCL, cluster = ~manufacturer, cadjust=TRUE)
coeftest(ols, vcov = vcovCL(ols, cluster = ~manufacturer))
coeftest(ols, vcov = vcovCL(ols, type="HC1", cluster = ~manufacturer))

Note: The above commands multiply V̂ with (N−1)/(N−K−1)·G/(G−
1) to “correct” for degrees of freedom in small samples. R reports p-values

for the t- and F -statistics with N −K − 1 degrees of freedom.

We can also estimate a cluster robust covariance using a nonparametric

block bootstrap

coeftest(ols, vcov = vcovBS, cluster = ~manufacturer, R=999)

The wild block residual bootstrap-t for the slope coefficient of the

variabel weight is calculated by David Roodman’s algorithm in boottest

library(fwildclusterboot)
wild <- boottest(ols, param="weight", clustid=c("manufacturer"),

B=99999, type="rademacher", impose_null=TRUE,
p_val_type="two-tailed")

summary(wild)

3 There are only 23 clusters in this example dataset used by the Stata manual. This

is not enough to justify using large sample approximations.
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