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1 Introduction

Despite its name, the classical linear regression model, is not limited to a

linear relationship between the dependent and the explanatory variables.

Consider a vector x′i = (xi1 xi2 ... xiK) of K variables for each observation

i. The L functions f1(xi), f2(xi), ..., fL(xi) map the K-dimensional vector

xi into L scalars zi1, zi2, ..., ziL. The function g(yi) is a univariate

function of the dependent variable. The non-linear econometric model

g(yi) = β0 + β1f1(xi) + β2f2(xi) + · · ·+ βLfL(xi) + ui

can therefore be written as

g(yi) = β0 + β1zi1 + β2zi2 + · · ·+ βLziL + ui

= z′iβ + ui .

The latter is the usual multiple linear regression model with L+ 1 regres-

sors as long as all necessary assumptions about the error term and the

L transformed explanatory variables zi1, zi2, ..., ziL are satisfied. All

properties of OLS are therefore preserved.

Note: While the original model is potentially non-linear in the variables

xik, it is linear in the parameters β. Also note that the error term ui is

additive.
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2 Examples

2.1 Polynomial

Functional form (3rd order):

yi = β0 + β1xi + β2x
2
i + β3x

3
i + ui

Expected value under OLS3c:

E[yi|xi] = β0 + β1xi + β2x
2
i + β3x

3
i
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Marginal effect on the expected dependent variable:

∂E[yi|xi]
∂xi

= β1 + 2β2xi + 3β3x
2
i .

Marginal effect on an individual given its error term ui:

∂yi
∂xi

= β1 + 2β2xi + 3β3x
2
i .

Note that the marginal effect depends on the value of the explanatory

variable xi. The individual parameters β1, β2 and β3 often have no direct

interpretation.
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2.2 Inverse

Functional form:

yi = β0 + β1
1

xi
+ ui.

Expected value under OLS3c:

E[yi|xi] = β0 + β1
1

xi
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Marginal effect:
∂E[yi|xi]
∂xi

= −β1

x2
i

and
∂yi
∂xi

= −β1

x2
i

.

Note that a positive sign of β1 means a negative relationship and vice-

versa.
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2.3 Explanatory Variable in Logs (linear-log)

Functional form:

yi = β0 + β1 ln(xi) + ui.

Expected value under OLS3c:

E[yi|xi] = β0 + β1 ln(xi)
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Marginal effect:
∂E[yi|xi]
∂xi

=
β1

xi
,

∂yi
∂xi

=
β1

xi
.

The coefficient β1 is approximately the effect of a 100 % change in the

explanatory variable xi on the dependent variable yi

β1 ≈
∆E[yi|xi]
∆xi/xi

, β1 ≈
∆yi

∆xi/xi

where ∆ is a small discrete change. Hence β1 divided by 100 is approxi-

mately the effect of a 1 % change in xi. β1 is also called a semi-elasticity.

For example, β1 = 56 means that an increase in xi by 1 % leads to an

increase in the dependent variable yi by (approximately) 0.56 units.1

1The exact effect of a discrete change of the explanatory variable by ∆xi is

∆E[yi|xi] = β1 · ln
(

1 +
∆xi

xi

)
and ∆yi = β1 · ln

(
1 +

∆xi

xi

)
.

For example, β1 = 56 means that an increase in xi by 0.01 = 1 % leads to an increase

in the dependent variable yi by exactly 56 · ln(1 + 0.01) = 56 · 0.00995 = 0.557 units.
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2.4 Dependent Variable in Logs (log-linear)

Functional form:

ln(yi) = β0 + β1xi + ui.

Exptected value:

E[yi|xi] = eβ0+β1xi · αi.

where αi = E[eui |xi] > 1. If the error is independent of the explanatory

variables (OLS3b), αi = α is constant. If the error is normally distributed

with homoscedastic error V [ui|xi] = σ2 (OLS3a, OLS4a), αi = α = eσ
2/2.
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Marginal effect:

∂E[yi|xi]
∂xi

= E[yi|xi] · β1,
∂yi
∂xi

= yi · β1.

The coefficient β1 · 100 % is approximately the percentage effect on the

dependent variable yi of a change in the variable xi by one unit

β1 ≈
∆E[yi|xi]
E[yi|xi]

∆xi
, β1 ≈

∆yi
yi

∆xi

where ∆ is a small discrete change. β1 is also called a semi-elasticity. For

example, β1 = 0.06 means that an increase in xi by one unit leads to an

increase in the dependent variable yi by (approximately) 6 %.2

2The exact effect of a discrete change of the explanatory variable by ∆xi units is

∆E[yi|xi]
E[yi|xi]

= eβ1∆xi − 1 and
∆yi

yi
= eβ1∆xi − 1.

For example, β1 = 0.06 means that an increase in xi by one unit leads to an increase

in the dependent variable yi by exactly exp(0.06)− 1 = 0.0618 = 6.18 %.
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2.5 Dependent and Explanatory Variables in Logs (log-log)

Functional form:

ln(yi) = β0 + β1 ln(xi) + ui.

Expected value:

E[yi|xi] = eβ0+β1 ln(xi) · αi.

where αi = E[eui |xi] > 1. Assuming that the error is independent of

the explanatory variables (OLS3b), αi = α is a constant. Assuming that

the error is normally distributed with homoscedastic error V [ui|xi] = σ2

(OLS3a and OLS4a), αi = α = eσ
2/2. For σ = 1, hence α = 1.65:
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Marginal effect:

∂E[yi|xi]
∂xi

= E[yi|xi] ·
β1

xi
,

∂yi
∂xi

= yi ·
β1

xi
.

The coefficient β1 is approximately the percentage effect on the dependent

variable yi of a 1 % change in the explanatory variable xi

β1 ≈
∆E[yi|xi]
E[yi|xi]

∆xi

xi

, β1 ≈
∆yi
yi

∆xi

xi

where ∆ is a small discrete change. β1 is also called an elasticity. For

example, β1 = 0.8 means that an increase in xi by 1 % leads to an increase

in the dependent variable yi by (approximately) 0.8 %.3

3The exact effect of a discrete change of the explanatory variable by ∆xi is

∆E[yi|xi]
E[yi|xi]

= e
β1 ln

(
1+

∆xi
xi

)
− 1 and

∆yi

yi
= e

β1 ln
(
1+

∆xi
xi

)
− 1.

For example, β1 = 0.8 means that an increase in xi by 0.01 = 1 % leads to an increase

in the dependent variable yi by exactly exp(0.8 · ln(1 + 0.01))− 1 = 0.00799 = 0.799 %.
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2.6 Dummy Variables

Functional form:

yi = β0 + β1di + ui

where di ∈ {0, 1} is a dummy variable that either takes value 0 or 1.

Expected value under OLS3c:

E[yi|di] =

β0 if di = 0

β0 + β1 if di = 1

Marginal effect:

∂E[yi|di]
∂di

= β1 and
∂yi
∂di

= β1.

Note that the notion of a marginal, i.e. infinitesimally small change, is

not useful for a dummy variable di which can only increase by exactly

one unit. The coefficient β1 is better interpreted as the difference in the

means of the (treatment) group with di = 1 and the (control) group with

di = 0

β1 = E[yi|di = 1]− E[yi|di = 0]

which constitutes the average treatment effect (ATE).

Note that the model

yi = β0 + β1treati + β2controli + ui

where the dummy variable treati takes value 1 for the treatment group

and 0 for the control group while the dummy variable controli takes the

opposite values violates OLS5 and the parameters β0, β1 and β2 cannot

be separately identified. This is called the dummy variable trap.
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2.7 Interaction Terms

Functional form:

yi = β0 + β1xi1 + β2xi2 + β3(xi1 · xi2) + ui

Expected value under OLS3c:

E[yi|xi1, xi2] = β0 + β1xi1 + β2xi2 + β3(xi1 · xi2)
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Marginal effects:

∂E[yi|xi1, xi2]

∂xi1
=
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∂xi2
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2.8 Interactions with Dummy Variables

Functional form:

yi = β0 + β1xi + β2di + β3(xi · di) + ui

where di ∈ {0, 1} is a dummy variable that either takes value 0 or 1 and

xi is a continuous explanatory variable.

Expected value under OLS3c:

E[yi|xi, di] =

β0 + β1xi if di = 0

(β0 + β2) + (β1 + β3)xi if di = 1
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Marginal effect:

∂E[yi|xi, di]
∂xi1

=
∂yi
∂xi1

=

β1 if di = 0

β1 + β3 if di = 1

Note that the interaction of all variables (here constant and one explana-

tory variable xi) with the dummy variable di estimates separate linear

relationships for the two groups defined by di. This yields identical esti-

mates as two separate regressions for both groups. The standard errors

may differ between the interacted joint estimation and the separate re-

gressions unless robust standard errors are computed.
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2.9 Spline Functions

Functional form:

yi = β0 + β1xi + β2di1(xi − s1) + β3di2(xi − s2) + ui

where di1 = 1 if xi ≥ s1 and di2 = 1 if xi ≥ s2. s1 and s2 are known

thresholds.

Expected value under OLS3c:

E[yi|xi] = β0 + β1xi + β2di1(xi − s1) + β3di2(xi − s2)
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Marginal effect:

∂E[yi|xi]
∂xi

=
∂yi
∂xi

=


β1 if xi < s1

β1 + β2 if s1 ≤ xi < s2

β1 + β2 + β3 if xi ≥ s2
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3 Implementation in Stata 17

Non-linear Functional forms can be estimated with OLS by generating

the transformed variables. For example,

webuse auto7.dta
generate mpg2 = mpg^2
reg price mpg mpg2

estimates a second order polynomial.

Dummy variables are easily created from categorical variables with

the xi command. For example,

xi i.manufacturer
reg price mpg _Imanufactu_*

creates 22 dummy variables for the 23 categories in the variable

manufacturer grp (excluding the first one for use as reference category)

and regresses price on mpg and all 22 dummy variables plus a constant.

This can also be done in one step,

reg price mpg i.manufacturer_grp

Interactions with categorical variables can be directly can be formed as

“factor variables”. For example,

reg price i.foreign i.foreign#c.mpg

estimates separate intercepts and separate slopes of mpg for domestic and

for foreign cars. Alternatively,

reg price i.foreign##c.mpg

reports the difference of intercept and slopes for foreign cars compared to

the reference group, i.e. domestic cars.

The variables used for spline functions are conveniently created with

the mkspline command. For example,

mkspline mpg_1 20 mpg_2 25 mpg_3 = mpg
reg price mpg_*

regresses price on mpg using a piecewise linear function. Also consider

the option marginal.
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4 Implementation in R 4.3.1

Non-linear Functional forms can be estimated with OLS by specifying the

Functional form in the estimated model. For example,

library(haven)
auto <- read_dta("http://www.stata-press.com/data/r17/auto7.dta")
lm(price~mpg+I(mpg^2), data=auto)

regresses price on a second order polynomial of mpg. Note that most

mathematical functions need to be wrapped within the I() function.

Categorical variables are automatically included as a set of dummy

variables if they are defined as factor variables. For example,

auto$manufacturer_grpf <- factor(auto$manufacturer_grp)
lm(price~mpg+manufacturer_grpf, data=auto)

regresses price on mpg and 22 dummy variables in manufacturer grp

(excluding the first category for use as reference group) plus a constant.

Interactions with categorical variables can be directly estimated when

the categorical variable is defined as factor variable. For example,

auto$foreignf <- factor(auto$foreign, labels=c("domestic", "foreign"))
lm(price~foreignf+mpg:foreignf, data=auto)

estimates separate intercepts and separate slopes of mpg for domestic and

for foreign cars. Alternatively,

lm(price~foreignf+mpg/foreignf, data=auto)

reports the difference of intercept and slopes for foreign cars compared to

the reference group, i.e. domestic cars. In the case of interaction with a

dummy variable, this is equivalent to either

lm(price~foreign+mpg+mpg:foreign, data=auto)
lm(price~foreign+mpg+I(mpg*foreign), data=auto)

Linear (and polynomial) spline functions are implemented in the splines

package. See the help for details,

library("splines")
?splines
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