
Short Guides to Microeconometrics
Fall 2023

Kurt Schmidheiny
Unversity of Basel

Heteroskedasticity in the Linear Model

1 Introduction

This handout extends the handout on “The Multiple Linear Regression

model” and refers to its definitions and assumptions in section 2.

This handouts relaxes the homoscedasticity assumption (OLS4a) and

shows how the parameters of the linear model are correctly estimated and

tested when the error terms are heteroscedastic (OLS4b).

2 The Econometric Model

Consider the multiple linear regression model for observation i = 1, ..., N

yi = x′iβ + ui

where x′i is a (K + 1)-dimensional row vector of K explanatory variables

and a constant, β is a (K + 1)-dimensional column vector of parameters

and ui is a scalar called the error term.

Assume OLS1, OLS2, OLS3 and

OLS4: Error Variance

b) conditional heteroscedasticity:

V [ui|xi] = σ2
i = σ2ωi = σ2ω(xi)

and E[u2
ixix

′
i] = QXΩX is p.d. and finite

where ω(.) is a function constant across i. The decomposition of σ2
i into

ωi and σ2 is arbitrary but useful.

Note that under OLS2 (i.i.d. sample) the errors are unconditionally

homoscedastic, V [ui] = σ2 but allowed to be conditionally heteroscedas-

tic, V [ui|xi] = σ2
i . Assuming OLS2 and OLS3c provides that the errors
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are also not conditionally autocorrelated, i.e. ∀i 6= j : Cov[ui, uj |xi, xj ] =

E[uiuj |xi, xj ] = E[ui|xi] · E[uj |xj ] = 0 . Also note that the condition-

ing on xi is less restrictive than it may seem: if the conditional variance

V [ui|xi] depends on other exogenous variables (or functions of them), we

can include these variables in xi and set the corresponding β parameters

to zero.

The variance-covariance of the vector of error terms u = (u1, u2, ..., uN )′

in the whole sample is therefore

V [u|X] = E[uu′|X] = σ2Ω

=


σ2

1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
N

 = σ2


ω1 0 · · · 0

0 ω2 · · · 0
...

...
. . .

...

0 0 · · · ωN



3 A Generic Case: Groupewise Heteroskedasticity

Heteroskedasticity is sometimes a direct consequence of the construc-

tion of the data. Consider the following linear regression model with

homoscedastic errors

yi = x′iβ + ui

with V [ui|xi] = V [ui] = σ2.

Assume that instead of the individual observations yi and xi only the

mean values yg and xg for g = 1, ..., G groups are observed. The error

term in the resulting regression model

yg = x′gβ + ug

is now conditionally heteroskedastic with V [ug|Ng] = σ2
g = σ2/Ng, where

Ng is a random variable with the number of observations in group g.
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4 Estimation with OLS

The parameter β can be estimated with the usual OLS estimator

β̂OLS = (X ′X)
−1
X ′y

The OLS estimator of β remains unbiased under OLS1, OLS2, OLS3c,

OLS4b, and OLS5 in small samples. Additionally assuming OLS3a, it is

normally distributed in small samples. It is consistent and approximately

normally distributed under OLS1, OLS2, OLS3d, OLS4a or OLS4b and

OLS5, in large samples. However, the OLS estimator is not efficient any

more. More importantly, the usual standard errors of the OLS estimator

and tests (t-, F -, z-, Wald-) based on them are not valid any more.

5 Estimating the Variance of the OLS Estimator

The small sample covariance matrix of β̂OLS is under OLS4b

V [β̂OLS |X] = (X ′X)
−1 [

X ′σ2ΩX
]

(X ′X)
−1

and differs from usual OLS where V [β̂OLS |X] = σ2(X ′X)−1. Conse-

quently, the usual estimator V̂ [β̂OLS |X] = σ̂2(X ′X)−1 is biased. Usual

small sample test procedures, such as the F - or t-Test, based on the usual

estimator are therefore not valid.

The OLS estimator is asymptotically normally distributed under OLS1,

OLS2, OLS3d, and OLS5
√
N(β̂ − β)

d−→N
(
0, Q−1

XXQXΩXQ
−1
XX

)
where QXΩX = E[u2

ixix
′
i] and QXX = E[xix

′
i]. The OLS estimator is

therefore approximately normally distributed in large samples as

β̂
A∼ N

(
β,Avar[β̂]

)
where Avar[β̂] = N−1Q−1

XXQXΩXQ
−1
XX can be consistently estimated as

Âvar[β̂] = (X ′X)
−1

[
N∑
i=1

û2
ixix

′
i

]
(X ′X)

−1
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with some additional assumptions on higher order moments of xi (see

White 1980).

This so-called White or Eicker-Huber-White estimator of the covari-

ance matrix is a heteroskedasticity-consistent covariance matrix estimator

that does not require any assumptions on the form of heteroscedasticity

(though we assumed independence of the error terms in OLS2 ). Stan-

dard errors based on the White estimator are often called robust. We can

perform the usual z- and Wald-test for large samples using the White

covariance estimator.

Note: t- and F -Tests using the White covariance estimator are only

asymptotically valid because the White covariance estimator is consistent

but not unbiased. It is therefore more appropriate to use large sample

tests (z, Wald).

Bootstrapping (see the handout on “The Bootstrap”) is an alternative

method to estimate a heteroscedasticity robust covariance matrix.

6 Testing for Heteroskedasticity

There are several tests for the assumption that the error term is ho-

moskedastic. White (1980)’s test is general and does not presume a par-

ticular form of heteroskedasticity. Unfortunately, little can be said about

its power and it has poor small sample properties unless the number of

regressors is very small. If we have prior knowledge that the variance σ2
i

is a linear (in parameters) function of explanatory variables, the Breusch-

Pagan (1979) test is more powerful. Koenker (1981) proposes a variant of

the Breusch-Pagan test that does not assume normally distributed errors.

Note: In practice we often do not test for heteroskedasticity but di-

rectly report heteroskedasticity-robust standard errors.
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7 Estimation with GLS/WLS when Ω is Known

When Ω is known, β is efficiently estimated with generalized least squares

(GLS)

β̂GLS =
(
X ′Ω

−1
X
)−1

X ′Ω
−1
y.

The GLS estimator simplifies in the case of heteroskedasticity to

β̂WLS = (X̃ ′X̃)−1X̃ ′ỹ

where

ỹ =


y1/
√
ω1

...

yN/
√
ωN

 , X̃ =


x′1/
√
ω1

...

x′N/
√
ωN


and is called weighted least squares (WLS) estimator. The WLS estimator

of β can therefore be estimated by running OLS with the transformed

variables.

Note: the above transformation of the explanatory variables also ap-

plies to the constant, i.e. x̃i0 = 1/
√
ωi. The OLS regression using the

transformed variables does not include an additional constant.

The WLS estimator minimizes the sum of squared residuals weighted

by 1/ωi:

S (α, β) =

N∑
i=1

(ỹi − x̃′iβ)2 =

N∑
i=1

1

ωi
(yi − x′iβ)2 → min

β

The WLS estimator of β is unbiased and efficient (under OLS1, OLS2,

OLS3c, OLS4b, and OLS5 ) and normally distributed additionally assum-

ing OLS3a (normality) in small samples.

The WLS estimator of β is consistent, asymptotically efficient and ap-

proximately normally distributed under OLS4b (conditional heteroscedas-

ticity) and OLS2 , OLS1, OLS3d, and a modification of OLS5
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OLS5: Identifiability

X ′Ω−1X is p.d. and finite

E[ω−1
i xix

′
i] = QXΩ−1X is p.d. and finite

where ωi = ω(xi) is a function of xi.

The covariance matrix of β̂WLS can be estimated as

Âvar[β̂WLS ] = V̂ [β̂WLS ] = σ̂2(X̃ ′X̃)−1

where σ̂2 = ̂̃u′̂̃u/(N −K − 1) in small samples and σ̂2 = ̂̃u′̂̃u/N in large

samples and ̂̃u = ỹ − X̃β̂GLS . Usual tests (t-, F -) for small samples

are valid (under OLS1, OLS2, OLS3a, OLS4b and OLS5 ; usual tests (z,

Wald) for large samples are also valid (under OLS1, OLS2, OLS3d, OLS4b

and OLS5 ).

8 Estimation with FGLS/FWLS when Ω is Unknown

In practice, Ω is typically unknown. However, we can model the ωi’s

as a function of the data and estimate this relationship. Feasible gener-

alized least squares (FGLS) replaces ωi by their predicted values ω̂i and

calculates then β̂FGLS as if ωi were known.

A useful model for the error variance is

σ2
i = V [ui|zi] = exp(z′iδ)

where zi are L + 1 variables that may belong to xi including a constant

and δ is a vector of parameters. We can estimate the auxiliary regression

û2
i = exp(z′iδ) + νi

by nonlinear least squares (NLLS) where ûi = yi−x′iβ̂OLS or alternatively,

log(û2
i ) = z′iδ + νi

by ordinary least squares (OLS). In both cases, we use the predictions

ω̂i = exp(z′iδ̂)
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in the calculations for β̂FGLS and Âvar[β̂FGLS ].

The FGLS estimator is consistent and approximately normally dis-

tributed in large samples under OLS1, OLS2 ({xi, zi, yi} i.i.d.), OLS3d,

OLS4b, OLS5 and some additional more technical assumptions. If σ2
i is

correctly specified, βFGLS is asymptotically efficient and the usual tests

(z, Wald) for large samples are valid; small samples tests are only asymp-

totically valid and nothing is gained from using them. If σ2
i is not correctly

specified, the usual covariance matrix is inconsistent and tests (z, Wald)

invalid. In this case, the White covariance estimator used after FGLS pro-

vides consistent standard errors and valid large sample tests (z, Wald).

Note: In practice, we often choose a simple model for heteroscedastic-

ity using only one or two regressors and use robust standard errors.
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Implementation in Stata 17

Stata reports the White covariance estimator with the robust option, e.g.

webuse auto.dta
regress price mpg weight, vce(robust)
matrix list e(V)

Stata reports the same robust covariance correcting for degrees of freedom

in small samples by multiplying the variance by N/(N−K−1). For small

sample sizes (N < 250), the following version of robust standard errors

should be used (Long and Ervin, 2000):

regress price mpg weight, vce(hc3)

Alternatively, Stata estimates a heteroscedasticity robust covariance

using a nonparametric bootstrap. For example,

regress price mpg weight, vce(bootstrap, rep(100))
matrix list e(V)

The White (1980) test for heteroskedasticity is implemented in the

post-estimation command

estat imtest, white

The Koenker (1981) version of the Breusch-Pagan (1979) test is im-

plemented in the postestimation command estat hettest. For example,

estat hettest weight foreign, iid

assumes σ2
i = δ0 + δ1weighti + δ2foreigni and tests H0 : δ1 = δ2 = 0.

WLS is estimated in Stata using analytic weights. For example,

regress depvar indepvars [aweight = 1/w]

calculates the WLS estimator assuming ωi is provided in the variable w.

Recall that we defined σ2
i = σ2ωi (mind the squares). The analytic weight

is proportional to the inverse variance of the error term. Stata internally

scales the weights s.t.
∑

1/ωi = N . The reported Root MSE therefore

reports σ̂
2

= (1/N)
∑
σ̂2
i .
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Implementation in R 4.3.1

R reports the Eicker-Huber-White covariance after estimation

> library(haven)
> auto <- read_dta("http://www.stata-press.com/data/r17/auto.dta")
> ols <- lm(price ~ mpg + weight, data = auto)

using the two packages sandwich and lmtest

> library(sandwich)
> library(lmtest)
> coeftest(ols, vcov = sandwich)

The following two commands are equivalent

> coeftest(ols, vcov = vcovHC, type="HC0")
> coeftest(ols, vcov = vcovHC(ols, type="HC0"))

The type HC1 reports the same robust covariance as Stata correcting

for degrees of freedom in small samples by multiplying the variance by

N/(N −K − 1).

> coeftest(ols, vcov = vcovHC, type="HC1")

For small sample sizes (N < 250), the type HC3 should be used (Long and

Ervin, 2000).

> coeftest(ols, vcov = vcovHC, type="HC3")

A heteroskedasticity robust F -test for H0 : β1 = 0 is called by

> waldtest(ols, "weight", vcov = vcovHC(ols, type="HC3"))

and for H0 : β1 = 0 and β2 = 0 against HA : β1 6= 0 or β2 6= 0 by

> waldtest(ols, .~.-weight - displacement,
vcov = vcovHC(ols, type="HC3"))
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