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1 Truncation

Truncation occurs when the observed data in the sample are drawn from

a subset of the whole population. The subset is defined based on the

value of the dependent variable.

An example: A study of the determinants of incomes of the poor.

Only households with income below a certain poverty line are part of the

sample.

1.1 The Model (Truncated Regression)

Consider a latent random variable yi that linearly depends on xi, i.e.

y∗
i = x′

iβ + εi with εi|xi ∼ N(0, σ2).

The error term εi is independently and normally distributed with mean

0 and variance σ2. The distribution of y∗
i given xi is therefore also nor-

mal: y∗
i |xi ∼ N(x′

iβ, σ2). The expected value of the latent variable is

E(y∗
i |xi) = x′

iβ.

Observation i is only observed if y∗
i is above a certain known threshold

a, i.e.

yi =

{
y∗

i if y∗
i > a

n.a. if y∗
i ≤ a

The density function of the observed truncated variable yi is therefore

the pdf of the latent variable conditional on it being observed, i.e.1

f(yi|xi) = f (y∗
i |y∗

i > a, xi ) =
f(y∗

i |xi)

P (y∗
i > a|xi)

=
σ−1φ

(
yi−x′

iβ

σ

)
1 − Φ

(
a−x′

iβ

σ

) =
1

σ

φ
(

x′
iβ−yi

σ

)
Φ
(

x′
iβ−a

σ

)
1Note how the pdf of a normally distributed variable ε with mean μ variance σ2

can be written using the pdf φ(.) of the standard normal N(0, 1)

f(ε) =
1

σ
√

2π
exp

[
− (ε − μ)2

2σ2

]
=

1
σ

{
1√
2π

exp

[
−1

2

(
ε − μ

σ

)2
]}

= σ−1φ

(
ε − μ

σ

)
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Figure 1: The truncated regression model. Lower truncation at a = 0,

N = 30, K = 2, β = (−2, 0.5)′ and σ = 1.

where φ(.) is the pdf and Φ(.) the cumulative normal distribution.

The expected value of the observed variable is not linear in xi (try to

derive the equation below)

E(yi|xi) = E (y∗
i |y∗

i > a, xi ) = x′
iβ + σ

φ [(x′
iβ − a)/σ)]

Φ [(x′
iβ − a)/σ]

= x′
iβ + σλi

where λi ≡ φ(αi)/Φ(αi) and αi = (x′
iβ − a)/σ. Figure 1 visualizes the

truncated regression model in an example.

1.2 Interpretation of Parameters

The interpretation of the parameters depends very much on the research

question. If the researcher is interested in the underlying linear rela-

tionship in the whole population, the slope coefficients β can simply be

interpreted as marginal effects. However, if the researcher is only inter-

ested in the effect on the observed subpopulation, the marginal effect is
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more complicated:

∂E(yi|xi)

∂xik

=
∂E (y∗

i |y∗
i > a, xi )

∂xik

= βk + σ
∂λi

∂xik

= βk

[
1 − λ2

i − αiλi

]
.

1.3 Estimation

OLS regression of the observed variable yi on xi

yi = x′
iβ + ui

will yield biased estimates of beta, as the error term ui = εi|y∗
i > a is

correlated with xi and E(ui|xi) = E(εi|y∗
i > a, xi) = σλi > 0.

The truncated regression is therefore usually estimated by maximum

likelihood (ML). The log likelihood function is

lnL =
N∑

i=1

ln

[
σ−1φ

(
yi − x′

iβ

σ

)]
−

N∑
i=1

ln

[
1 − Φ

(
a − x′

iβ

σ

)]

and allows to estimate both β and σ by an iterative numerical procedure.

Usual ML properties (consistency, asymptotic efficiency and normality,

etc) apply and asymptotic hypothesis tests can be performed as Wald,

likelihood ratio or lagrange multiplier tests.

1.4 Implementation in STATA 10.0

Stata estimates the truncated regression model by the command

truncreg depvar [indepvars], ll(#)

where ll(#) defines the lower truncation point a. We can also estimate

a more general model with a lower and an upper truncation point

truncreg depvar [indepvars], ll(varname) lu(varname)
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where the upper ll and lower lu thresholds can be observation specific

and their values are defined by varname.

The post-estimation commands predict calculates by default the lin-

ear index function x′
iβ. The option predict, e(a,b) calculates E(yi|xi) =

E(y∗
i |a < y∗

i < b, xi). The post-estimation command mfx reports marginal

effects. By default ∂E(y∗
i |xi)/∂xik = βk is reported. The marginal ef-

fect on the observed truncated variable, ∂E(y∗
i |a < y∗

i < b, xi)/∂xik, is

calculated by mfx, predict(e(a,b)).

For example,

webuse laborsub
truncreg whrs kl6 k618 wa we, ll(0)
predict whrs_hat, e(0,.)
mfx, predict(e(0,.)) at(kl6=1, k618=0, wa=35, we=15)

regresses the hours worked (whrs) on the number of children below age 6

(kl6 ), children between age 6 and 18 (k618 ), age (wa) and education in

years (we) for a sample women who work (whrs> 0). It then predicts the

hours worked in the subpopulation of working women, i.e. E(whrsi|xi) =

E(whrs∗i |whrs∗i > 0, xi). Marginal effects on the hours worked in the

subpopulation, i.e. ∂E(whrsi|xi)/∂xik, are then reported for a 35 year

old woman with 15 years of education and one child below age 6.
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2 Censoring

Censoring occurs when the values of the dependent variable are restricted

to a range of values. As in the case of truncation the dependent variable

is only observed for a subsample. However, there is information (the

independent variables) about the whole sample.

Some examples:

• Income data are often top-coded in survey data. For example, all

incomes above CHF 200,000 may be reported as CHF 200,000.

However, households with high incomes are part of the sample and

their characteristics reported.

• Tickets sold for soccer matches cannot exceed the stadion’s capac-

ity.

• Expenditures for durable goods are either positive or zero. (This

is the example used in Tobin’s (1958) original paper.)

• The number of extramarital affairs are nonnegative. (Note that

although Fair’s (1978) famous article uses a Tobit model, count

data models may be more appropriate)

2.1 The Model (Tobit Type 1)

Consider a latent random variable yi that linearly depends on xi, i.e.

y∗
i = x′

iβ + εi with εi|xi ∼ N(0, σ2).

The error term εi is independently and normally distributed with mean

0 and variance σ2. The distribution of yi given xi is therefore also nor-

mal: y∗
i |xi ∼ N(x′

iβ, σ2). The expected value of the latent variable is

E(y∗
i |xi) = x′

iβ.
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The observed value yi is censored below 0, i.e.2

yi =

{
y∗

i if y∗
i > 0

0 if y∗
i ≤ 0

The observed variable is a mixture random variable with a probability

mass P (yi = 0|xi) = P (y∗
i < 0|xi) = Φ(−x′

iβ/σ) on 0 and a continuum

of values above 0 with density f(yi|xi) = σφ[(yi − x′
iβ)/σ].

The expected value of the observed variable is

E(yi|xi) = 0 · P (y∗
i ≤ 0|xi) + E(y∗

i |y∗
i > 0, xi) · P (y∗

i > 0|xi)

=

[
x′

iβ + σ
φ (x′

iβ/σ)

Φ (x′
iβ/σ)

]
Φ (x′

iβ/σ)

= x′
iβ Φ (x′

iβ/σ) + σφ (x′
iβ/σ)

Figure 2 visualizes the truncated regression model in an example.

2.2 Interpretation of Parameters

The interpretation of the parameters depends very much on research

question. If the researcher is interested in the underlying linear rela-

tionship of the whole population, the slope coefficients β can simply be

interpreted as marginal effects

∂E (y∗
i |xi)

∂xik

= βk

However, if the researcher is interested in the effect on the expected value

of the observed (censored) value, the marginal effect is (derive!)

∂E (yi|xi)

∂xik

= βk Φ

(
x′

iβ

σ

)
2It is straightforward to study any known treshold a �= 0 within the above frame-

work. If the original variable yi is censored below at a then zi = yi − a satisfies the
Tobit model. If the original variable is censored above at a, then zi = −(yi − a) is a
standard Tobit model.
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Figure 2: The standard (type 1) Tobit model. Lower censoring at 0,

N = 30, K = 2, β = (−2, 0.5)′ and σ = 1

There is an interesting decomposition of this marginal effect (McDonald

and Mofitt, 1980): (1) the effect on the expectation of fully observed

values and (2) the effect on the probability of being fully observed:

∂E (yi|xi)

∂xik

=
∂E (y∗

i |y∗
i > 0, xi )

∂xik︸ ︷︷ ︸
(1)

P (y∗
i > 0)+

∂P (y∗
i > 0)

∂xik︸ ︷︷ ︸
(2)

E (y∗
i |y∗

i > 0, xi )

with

∂E (y∗
i |y∗

i > 0, xi )

∂xik

= βk

(
1 − λ2

i − αiλi

)
∂P (y∗

i > 0)

∂xik

=
∂Φ(x′

iβ/σ)

∂xik

= βk σ−1φ(x′
iβ/σ)

where λi ≡ φ(−x′
iβ/σ)/[1−Φ(−x′

iβ/σ)] = φ(x′
iβ/σ)/Φ(x′

iβ/σ) and αi =

x′
iβ/σ. These marginal effects depend on individual characteristics xi

and can only be reported for specified types or as average effects in the

sample population.
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2.3 Estimation

The OLS regression of the observed variable yi on xi

yi = x′
iβ + ui

will yield biased estimates of β, as E(yi|xi) = x′
iβ Φ(αi)+σφ(αi) is not a

linear function of xi. Note that restricting the sample to fully observed

observations, i.e. where yi > 0, does not solve the problem as can be

seen in the truncated regression model above.

The censored regression is usually estimated by maximum likelihood

(ML). Assuming independence across observations, the log likelihood

function is

lnL =
∑

{i|yi>0}
ln

[
σ−1φ

(
yi − x′

iβ

σ

)]
+

∑
{i|yi=0}

ln

[
1 − Φ

(
x′

iβ

σ

)]

and allows to estimate both β and σ by an iterative numerical procedure.

The above likelihood function is a (strange) mixture of discrete and con-

tinuous components and standard ML proofs do not apply. However, it

can be shown that the Tobit estimator has the usual ML properties: con-

sistency, asymptotic efficiency and normality and asymptotic hypothesis

tests can be performed as Wald, likelihood ratio or lagrange multiplier

tests. Although the log-likelihood function of the Tobit model is not

globally concave, it has a unique maximum.

The ML estimation of the of the censored regression model rests on

the strong assumption that the latent error term is normally distributed

and homoscedastic. The ML estimator is inconsistent in the presence

of heteroscedasticity and robust covariance estimators cannot solve this.

Several semi-parametric estimation strategies have been proposed that

relax the distributional assumption about the error term. See Chay and

Powell (2001) for an introduction.
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2.4 Implementation in STATA 10.0

Stata estimates the standard (type 1) tobit model by the command

tobit depvar [indepvars], ll(0)

More general models with censoring from above and below are estimated

by

tobit depvar [indepvars], ll(#) ul(#)

where the number in ll(#) in the lower threshold and then number in

ul(#) is the upper threshold.

The post-estimation commands predict calculates by default the lin-

ear index function x′
iβ. The option predict, ystar(0,.) predicts the

observed censored variable E(yi|xi) = E(y∗
i |y∗

i > 0, xi) · P (y∗
i > 0|xi).

The post-estimation command mfx reports marginal effects. By default

∂E(y∗
i |xi)/∂xik = βk is reported. The marginal effect on the observed

censored variable, ∂E(yi|xi)/∂xik, is calculated by mfx, predict(ystar(0,.)).

See help tobit postestimation on how to calculate all parts of the

McDonald and Mofitt decomposition using predict and mfx.

For example,

tobit housing inc age edu, ll(0)
predict housing_hat, ystar(0,.)
mfx, predict(ystar(0,.)) at(inc=50000, age=45, edu=12)

predicts E(yi|xi) and calculates the marginal effects of income, age and

experience on expected observed housing expenditures E(yi|xi) for a 45

year old person with income 50,000 and 12 years of education.
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3 Selection

The sample selection problem occurs when the observed sample is not

a random sample from the whole population but from a distinct subset

of the population. Truncation and censoring as special cases are special

cases of sample selection or incidental truncation.

The classical example: Income is only observed for employed persons

but not for the ones that decide to stay at home (historically mainly

women).

3.1 The Model (Heckman Selection Model, Tobit Type 2)

Consider a model with two latent variables y∗
i and d∗

i which linearly

depend on observable independent variables xi and zi, respectively

d∗
i = z′iγ + νi

y∗
i = x′

iβ + εi

with

νi, εi|xi, zi ∼ N

(
0,

[
1 ρ σe

ρ σe σ2
ε

])

The error terms εi and νi are independently (across observations) and

jointly normally distributed with covariance ρ σε. Note that the variance

of νi is set to unity as it is not identified in the estimation.

The two latent variables cannot be observed by the researcher. She

only observes an indicator di when the latent variable d∗
i is positive. The

value of the variable yi = y∗
i is only observed if the indicator is 1:

di =

{
1 if d∗

i > 0

0 otherwise

yi =

{
y∗

i if di = 1

n.a. otherwise

Limited Dependent Variable Models 12
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Figure 3: The selection model with correlated observable and unobserv-

able characteristics. N = 30, γ = (−1.5, 1)′ β = (−2, 0.5)′, σε = 1,

ρ = 0.8 and corr(xi, zi) = 0.5.

In other words, the first equation (the decision equation d∗
i ) explains

whether an observation is in the sample or not. The second equation

(the regression equation y∗
i ) determines the value of yi. Note that the

standard tobit model is a special case of this setup with zi = xi, γ = β,

σν = σε and ρ = 1.
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Figure 4: The selection model with correlated observable but

uncorrelated unobservable characteristics. ρ = 0.

Figure 3 shows an example of a selection model. The positive corre-

lation between x and z explains why the probability of being observed

increases with x. The positive error correlation explains why, for given

xi and zi, points y∗
i above the expected value (e.g. point 6) are more

likely to be observed.

The expected value of the variable yi is the conditional expectation

of y∗
i conditioned on it being observed (di = 1)

E(yi|xi, zi) = E(y∗
i |di = 1, xi, zi) = x′

iβ + ρ σε
φ(z′iγ)

Φ(z′iγ)
= x′

iβ + ρ σελ(z′iγ)

where λ(α) ≡ φ(α)/Φ(α) is called the inverse Mills ratio.

Note that E(yi|xi, zi) = x′
iβ if the two error terms are uncorrelated,

i.e. ρ = 0. This is yet true when xi and zi are correlated, as for example

in the usual case when some independent variables appear in x and z.
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Figure 5: The selection model with both uncorrelated observable and

uncorrelated unobservable characteristics, i.e random sampling. ρ = 0

and corr(xi, zi) = 0.

3.2 Interpretation of Parameters

In most cases, we are interested on the effect of independent variables

in the whole population. Therefore we would like to obtain an unbiased

and consistent estimator of β which is directly interpreted as marginal

effect.

In some cases, however, the researcher is interested in the effect on the

observed population. For regressors that appear on the LHS of both y∗
i

and d∗
i , the marginal effect depends not only on β but also on γ through

the probability of being in the sample. See your textbook for details.

3.3 Estimation

OLS regression of the observed variable yi on xi

yi = x′
iβ + ui



15 Empirical Methods for Applied Analysis

will yield biased estimates of β as the factor ρσεφ(z′iγ)/Φ(z′iγ) is omitted

and becomes part of the error term. The error term ui is therefore cor-

related with xi if ρ �= 0 and zi is correlated with xi. The resulting bias

is called selection bias or sample selectivity bias.

Note that there is no bias if the unobservable components are uncor-

related (ρ = 0) even when the observed sample is highly selective, i.e.

even when x and z are correlated and thus some values of x are more

likely to be observed than others. Figure 4 shows this situation. Needless

to say that there is no bias if the observable and unobservable character-

istics between the decision and the regression equation are uncorrelated.

This case of a pure random sample is sketched in Figure 5.

3.3.1 Estimation with Maximum Likelihood

The decision and regression equations can be simultaneously estimated

by maximum likelihood under the distributional assumptions made. The

log-likelihood function consists of two parts: (1) The likelihood contri-

bution from observations with di = 0, i.e. the probability of not being

observed in the regression equation. (2) The likelihood contribution from

observations with di = 1, i.e. the probability of being observed multiplied

with the conditional density of the observed value.

lnL =
∑
di=0

ln P (di = 0) +
∑
di=1

ln [P (di = 1)f(y∗
i |di = 1)]

=
∑
di=0

ln P (di = 0) +
∑
di=1

ln [f(y∗
i )P (di = 1|y∗

i )]

=
∑
di=0

ln P (di = 0) +
∑
di=1

ln f(y∗
i ) +

∑
di=1

ln P (di = 1|y∗
i )

=
∑
di=0

ln [Φ(−z′iγ)] +
∑
di=1

ln
[
σ−1φ ((yi − x′

iβ) /σ)
]

+
∑
di=1

ln

[
Φ

(
z′iγ + ρσ−1(yi − x′

iβ)

(1 − ρ2)1/2

)]
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Note that this likelihood function identifies β, γ, ρ, σε but not the

variance of ν which was set to unity. Although β and γ are theoretically

identified they are difficult to identify in practice when the same variables

are included in both equations, i.e. when xi = zi. It is therefore strongly

advised to include variables in z that are not included in x. In the case

of ρ = 0, the log likelihood functions reduces to the sum of a probit and

a standard linear regression model which can be estimated separately.

The ML estimation of the selection model has standard ML proper-

ties (consistency, efficiency, asymptotic normality, etc). In practice it is

often difficult to numerically find the maximum values and good start-

ing values are very important. Therefore, estimates from the two-step

procedure in the following section are often used as starting values. The

ML estimation is only necessary when a test on ρ = 0 is rejected in the

two-step estimation.

The ML estimation of the heckman selection model rests heavily on

the assumption that the error terms are jointly normally distributed.

This is a very strong and often unrealistic assumption. Several semi-

parametric estimation strategies have been proposed that relax the dis-

tributional assumption about the error term. See Vella (1998) for an

introduction.

3.3.2 Estimation with Heckman’s Two-Step Procedure

Heckman proposed a two-step procedure which only involves the estima-

tion of a standard probit and a linear regression model. The two step

procedure draws on the conditional mean

E(yi|xi, zi) = x′
iβ + ρ σε

φ(z′iγ)

Φ(z′iγ)
= x′

iβ + ρ σελ(z′iγ)

of the fully observed y’s.

Step 1 is the consistent estimation of γ by ML using the full set of
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Figure 6: The inverse Mills ratio and observations from Figure 3.

observations in the standard probit model

d∗
i = z′iγ + νi

di = 1 if d∗
i > 0, 0 otherwise.

We can use this to consistently estimate the inverse Mills ratio λ̂i =

φ(z′iγ̂)/Φ(z′iγ̂) for all observations.

Step 2 is the estimation of the regression equation with the inverse

Mills ratio as an additional variable

yi = x′
iβ + βλλ̂i + ui

for the subsample of full observations. The OLS regression yields β̂, β̂λ,

σ̂ε and thus the correlation ρ̂ = β̂λ/σ̂ε.

Heckman’s two step estimator is consistent but not efficient. Fur-

thermore, the covariance matrix of the second-step estimator provided

by standard OLS is incorrect as one regressor (the Mills ratio) is mea-

sured with error and the error term ui is heteroskedastic. Therefore the

Limited Dependent Variable Models 18

standard errors need to be corrected. However, the test on the null hy-

pothesis βλ = 0 whic is a test on ρ = 0 can be performed using the

“incorrect” OLS standard errors (as they are ”correct” under the null

hypothesis).

There is often a practical problem of identification (almost multi-

collinearity) when the variables in both equations are the same, i.e.

xi = zi (See Vella, 1998). The parameters β and βλ are theoretically

identified by the non-linearity of the inverse Mills ratio λ(.). However, as

can be seen in Figure 6, λ(.) is almost linear for a large range of values

z′iγ. It is therefore strongly advised to include variables in z that are not

included in x.

3.4 Implementation in STATA 10.0

Stata calculates ML estimates the by the command

heckman depvar varlist, select(depvar_s = varlist_s)

where in our notation depvar = y, varlist = x, depvar s = d and

varlist s = z. Stata calculates two-step estimates with corrected stan-

dard errors by adding the option twostep.
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