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The Multiple Linear Regression Model

1 Introduction

The multiple linear regression model and its estimation using ordinary

least squares (OLS) is doubtless the most widely used tool in econometrics.

It allows to estimate the relation between a dependent variable and a set

of explanatory variables. Prototypical examples in econometrics are:

• Wage of an employee as a function of her education and her work

experience (the so-called Mincer equation).

• Price of a house as a function of its number of bedrooms and its age

(an example of hedonic price regressions).

The dependent variable is an interval variable, i.e. its values represent

a natural order and differences of two values are meaningful. In practice,

this means that the variable needs to be observed with some precision

and that all observed values are far from ranges which are theoretically

excluded. Wages, for example, do strictly speaking not qualify as they

cannot take values beyond two digits (cents) and values which are nega-

tive. In practice, monthly wages in dollars in a sample of full time workers

is perfectly fine with OLS whereas wages measured in three wage cate-

gories (low, middle, high) for a sample that includes unemployed (with

zero wages) ask for other estimation tools.
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2 The Econometric Model

The multiple linear regression model assumes a linear (in parameters)

relationship between a dependent variable yi and a set of explanatory

variables x′i =(xi0, xi1, ..., xiK). xik is also called an independent

variable, a covariate or a regressor. The first regressor xi0 = 1 is a constant

unless otherwise specified.

Consider a sample of N observations i = 1, ... , N . Every single obser-

vation i follows

yi = x′iβ + ui

where β is a (K + 1)-dimensional column vector of parameters, x′i is a

(K + 1)-dimensional row vector and ui is a scalar called the error term.

The whole sample of N observations can be expressed in matrix nota-

tion,

y = Xβ + u

where y is a N -dimensional column vector, X is a N × (K + 1) matrix

and u is a N -dimensional column vector of error terms, i.e.



y1

y2

y3

...

yN

 =



1 x11 · · · x1K

1 x21 · · · x2K

1 x31 · · · x3K

...
...

. . .
...

1 xN1 · · · xNK




β0

β1

...

βK

 +



u1

u2

u3

...

uN


N × 1 N × (K + 1) (K + 1)× 1 N × 1

The data generation process (dgp) is fully described by a set of as-

sumptions. Several of the following assumptions are formulated in dif-

ferent alternatives. Different sets of assumptions will lead to different

properties of the OLS estimator.

OLS1: Linearity

yi = x′iβ + ui and E[ui] = 0
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OLS1 assumes that the functional relationship between dependent and

explanatory variables is linear in parameters, that the error term enters

additively and that the parameters are constant across individuals i.

OLS2: Independence

{xi, yi}Ni=1 i.i.d. (independent and identically distributed)

OLS2 means that the observations are independently and identically dis-

tributed. This assumption is in practice guaranteed by random sampling.

OLS3: Exogeneity

a) ui|xi ∼ N(0, σ2
i )

b) ui ⊥⊥ xi (independent)

c) E[ui|xi] = 0 (mean independent)

d) Cov[xi, ui] = 0 (uncorrelated)

OLS3a assumes that the error term is normally distributed conditional

on the explanatory variables. OLS3b means that the error term is in-

dependent of the explanatory variables. OLS3c states that the mean of

the error term is independent of the explanatory variables. OLS3d means

that the error term and the explanatory variables are uncorrelated. Either

OLS3a or OLS3b imply OLS3c and OLS3d. OLS3c implies OLS3d.

OLS4: Error Variance

a) V [ui|xi] = σ2 <∞ (homoscedasticity)

b) V [ui|xi] = σ2
i = g(xi) <∞ (conditional heteroscedasticity)

OLS4a (homoscedasticity) means that the variance of the error term is

a constant. OLS4b (conditional heteroscedasticity) allows the variance of

the error term to depend on the explanatory variables.
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OLS5: Identifiability

E[xix
′
i] = QXX is positive definite and finite

rank(X) = K + 1 < N

The OLS5 assumes that the regressors are not perfectly collinear, i.e. no

variable is a linear combination of the others. For example, there can only

be one constant. Intuitively, OLS5 means that every explanatory variable

adds additional information. OLS5 also assumes that all regressors (but

the constant) have strictly positive variance both in expectations and in

the sample and not too many extreme values.

3 Estimation with OLS

Ordinary least squares (OLS) minimizes the squared distances between

the observed and the predicted dependent variable y:

S (β) =

N∑
i=1

(yi − x′iβ)2 = (y −Xβ)′(y −Xβ)→ min
β

The resulting OLS estimator of β is:

β̂ = (X ′X)
−1
X ′y

Given the OLS estimator, we can predict the dependent variable by

ŷi = x′iβ̂ and the error term by ûi = yi − x′iβ̂. ûi is called the residual.

4 Goodness-of-fit

The goodness-of-fit of an OLS regression can be measured as

R2 = 1− SSR

SST
=
SSE

SST

where SST =
∑N
i=1(yi − y)2 is the total sum of squares and SSR =∑N

i=1 û
2
i the residual sum of squares. SSE =

∑N
i=1(ŷi − y)2 is called
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Figure 1: The linear regression model with one regressor. β0 = −2,

β1 = 0.5, σ2 = 1, x ∼ uniform(0, 10), u ∼ N(0, σ2).

the explained sum of squares if the regression contains a constant and

therefore y = ŷ. In this case, R2 lies by definition between 0 and 1 and

reports the fraction of the sample variation in y that is explained by the

xs.

Note: R2 increases by construction with every (also irrelevant) addi-

tional regressors and is therefore not a good criterium for the selection of

regressors. The adjusted R2 is a modified version that does not necessarily

increase with additional regressors:

adj. R2 = 1− N − 1

N −K − 1

SSR

SST
.
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5 Small Sample Properties

Assuming OLS1, OLS2, OLS3a, OLS4, and OLS5, the following proper-

ties can be established for finite, i.e. even small, samples.

• The OLS estimator of β is unbiased :

E[β̂|X] = β

• The OLS estimator is (multivariate) normally distributed:

β̂|X ∼ N
(
β, V [β̂|X]

)
with variance V [β̂|X] = σ2 (X ′X)

−1
under homoscedasticity (OLS4a)

and V [β̂|X] = σ2 (X ′X)
−1
X ′ΩX (X ′X)

−1
under known heteroscedas-

ticity (OLS4b). Under homoscedasticity (OLS4a) the variance V

can be unbiasedly estimated as

V̂ (β̂|X) = σ̂2 (X ′X)
−1

with

σ̂2 =
û′û

N −K − 1
.

• Gauß-Markov-Theorem: under homoscedasticity (OLS4a),

β̂ is BLUE (best linear unbiased estimator)

6 Tests in Small Samples

Assume OLS1, OLS2, OLS3a, OLS4a, and OLS5.

A simple null hypotheses of the form H0 : βk = q is tested with the

t-test. If the null hypotheses is true, the t-statistic

t =
β̂k − q
ŝe[β̂k]

∼ tN−K−1
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follows a t-distribution with N−K−1 degrees of freedom. The standard

error ŝe[β̂k] is the square root of the element in the (k + 1)−th row and

(k+1)−th column of V̂ [β̂|X]. For example, to perform a two-sided test of

H0 against the alternative hypotheses HA : βk 6= q on the 5% significance

level, we calculate the t-statistic and compare its absolute value to the

0.975-quantile of the t-distribution. With N = 30 and K = 2, H0 is

rejected if |t| > 2.052.

A null hypotheses of the form H0 : Rβ = q with J linear restrictions

is jointly tested with the F -test. If the null hypotheses is true, the F -

statistic

F =

(
Rβ̂ − q

)′ (
RV̂ (β̂|X)R′

)−1 (
Rβ̂ − q

)
J

∼ FJ,N−K−1

follows an F distribution with J numerator degrees of freedom and N −
K − 1 denominator degrees of freedom. For example, to perform a two-

sided test of H0 against the alternative hypotheses HA : Rβ 6= q at the

5% significance level, we calculate the F -statistic and compare it to the

0.95-quantile of the F -distribution. With N = 30, K = 2 and J = 2, H0

is rejected if F > 3.35. We cannot perform one-sided F -tests.

Only under homoscedasticity (OLS4a), the F -statistic can also be

computed as

F =
(SSRrestricted − SSR)/J

SSR/(N −K − 1)
=

(R2 −R2
restricted)/J

(1−R2)/(N −K − 1)
∼ FJ,N−K−1

where SSRrestricted and R2
restricted are, respectively, estimated by re-

striced least squares which minimizes S(β) s.t. Rβ = q. Exclusionary

restrictions of the form H0 : βk = 0, βm = 0, ... are a special case of

H0 : Rβ = q. In this case, restricted least squares is simply estimated as

a regression were the explanatory variables k,m, ... are excluded.

7 Confidence Intervals in Small Samples

Assuming OLS1, OLS2, OLS3a, OLS4a, and OLS5, we can construct

confidence intervals for a particular coefficient βk. The (1−α) confidence
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interval is given by(
β̂k − t(1−α/2),(N−K−1)ŝe[β̂k] , β̂k + t(1−α/2),(N−K−1)ŝe[β̂k]

)
where t(1−α/2),(N−K−1) is the (1−α/2) quantile of the t-distribution with

N −K − 1 degrees of freedom. For example, the 95 % confidence interval

with N = 30 and K = 2 is
(
β̂k − 2.052ŝe[β̂k] , β̂k + 2.052ŝe[β̂k]

)
.

8 Asymptotic Properties of the OLS Estimator

Assuming OLS1, OLS2, OLS3d, OLS4a or OLS4b, and OLS5 the follow-

ing properties can be established for large samples.

• The OLS estimator is consistent:

plim β̂ = β

• The OLS estimator is asymptotically normally distributed under

OLS4a as √
N(β̂ − β)

d−→N
(
0, σ2Q−1

XX

)
and under OLS4b as

√
N(β̂ − β)

d−→N
(
0, Q−1

XXQXΩXQ
−1
XX

)
where QXX = E[xix

′
i] and QXΩX = E[u2

ixix
′
i] is assumed positive

definite (see handout on “Heteroskedasticity in the Linear Model”).

• The OLS estimator is approximately normally distributed

β̂
A∼ N

(
β,Avar[β̂]

)
where the asymptotic variance Avar[β̂] can be consistently esti-

mated under OLS4a (homoscedasticity) as

Âvar[β̂] = σ̂2 (X ′X)
−1
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with σ̂2 = û′û/N and under OLS4b (heteroscedasticity) as the ro-

bust or Eicker-Huber-White estimator (see handout on “Heteroscedas-

ticity in the linear Model”)

Âvar[β̂] = (X ′X)
−1

(
N∑
i=1

û2
ixix

′
i

)
(X ′X)

−1
.

Note: In practice we can almost never be sure that the errors are

homoscedastic and should therefore always use robust standard errors.

9 Asymptotic Tests

Assume OLS1, OLS2, OLS3d, OLS4a or OLS4b, and OLS5.

A simple null hypotheses of the form H0 : βk = q is tested with the

z-test. If the null hypotheses is true, the z-statistic

z =
β̂k − q
ŝe[β̂k]

A∼ N(0, 1)

follows approximately the standard normal distribution. The standard

error ŝe[β̂k] is the square root of the element in the (k + 1)−th row and

(k + 1)−th column of Âvar[β̂]. For example, to perform a two sided

test of H0 against the alternative hypotheses HA : βk 6= q on the 5%

significance level, we calculate the z-statistic and compare its absolute

value to the 0.975-quantile of the standard normal distribution. H0 is

rejected if |z| > 1.96.

A null hypotheses of the form H0 : Rβ = q with J linear restrictions is

jointly tested with the Wald test. If the null hypotheses is true, the Wald

statistic

W =
(
Rβ̂ − q

)′ (
RÂvar[β̂]R′

)−1 (
Rβ̂ − q

)
A∼ χ2

J

follows approximately an χ2 distribution with J degrees of freedom. For

example, to perform a test of H0 against the alternative hypotheses HA :
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Rβ 6= q on the 5% significance level, we calculate the Wald statistic and

compare it to the 0.95-quantile of the χ2-distribution. With J = 2, H0 is

rejected if W > 5.99. We cannot perform one-sided Wald tests.

Under OLS4a (homoscedasticity) only, the Wald statistic can also be

computed as

W =
(SSRrestricted − SSR)

SSR/N
=

(R2 −R2
restricted)

(1−R2)/N

A∼ χ2
J

where SSRrestricted and R2
restricted are, respectively, estimated by re-

stricted least squares which minimizes S(β) s.t. Rβ = q. Exclusionary

restrictions of the form H0 : βk = 0, βm = 0, ... are a special case of

H0 : Rβ = q. In this case, restricted least squares is simply estimated as

a regression were the explanatory variables k,m, ... are excluded.

Note: the Wald statistic can also be calculated as

W = J · F A∼ χ2
J

where F is the small sample F -statistic. This formulation differs by a

factor (N −K − 1)/N but has the same asymptotic distribution.

10 Confidence Intervals in Large Samples

Assuming OLS1, OLS2, OLS3d, OLS5, and OLS4a or OLS4b, we can

construct confidence intervals for a particular coefficient βk. The (1− α)

confidence interval is given by(
β̂k − z(1−α/2)ŝe[β̂k] , β̂k + z(1−α/2)ŝe[β̂k]

)
where z(1−α/2) is the (1− α/2) quantile of the standard normal distribu-

tion. For example, the 95 % confidence interval is
(
β̂k − 1.96ŝe[β̂k] , β̂k+

1.96ŝe[β̂k]
)

.

11 Small Sample vs. Asymptotic Properties

The t-test, F -test and confidence interval for small samples depend on the

normality assumption OLS3a (see Table 1). This assumption is strong and
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unlikely to be satisfied. The asymptotic z-test, Wald test and the con-

fidence interval for large samples rely on much weaker assumptions. Al-

though most statistical software packages report the small sample results

by default, we would typically prefer the large sample approximations. In

practice, small sample and asymptotic tests and confidence intervals are

very similar already for relatively small samples, i.e. for (N −K) > 30.

Large sample tests also have the advantage that they can be based on

heteroscedasticity robust standard errors.

12 More Known Issues

Non-linear functional form: The true relationship between the dependent

variable and the explanatory variables is often not linear and thus in vi-

olation of assumption OLS1. The multiple linear regression model allows

for many forms of non-linear relationships by transforming both depen-

dent and explanatory variables. See the handout on “Functional Form in

the Linear Model” for details.

Aggregate regressors: Some explanatory variables may be constant

within groups (clusters) of individual observations. For example, wages of

individual workers are regressed on state-level unemployment rates. This

is a violation of the independence across individual observations (OLS2 ).

In this case, the usual standard errors will be too small and t-statistics too

large by a factor of up to
√
M , where M is the average number of individ-

ual observations per group (cluster). For example, the average number of

workers per state. Cluster-robust standard errors will provide asymptot-

ically consistent standard errors for the usual OLS point estimates. See

the handout on “Clustering in the Linear Model” for more details and

generalizations.

Omitted variables: Omitting explanatory variables in the regression

generally violates the exogeneity assumption (OLS3 ) and leads to biased

and inconsistent estimates of the coefficients for the included variables.

This omitted-variable bias does not occur if the omitted variables are

uncorrelated with all included explanatory variables.
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Irrelevant regressors: Including irrelevant explanatory variables, i.e.

variables which do not have an effect on the dependent variable, does not

lead to biased or inconsistent estimates of the coefficients for the other

included variables. However, including too many irrelevant regressors may

lead to very imprecise estimates, i.e. very large standard errors, in small

datasets.

Reverse causality : A reverse causal effect of the dependent variable

on one or several explanatory variables is a violation of the exogeneity

assumption (OLS3 ) and leads to biased and inconsistent estimates. See

the handout on “Instrumental Variables” for a potential solution.

Measurement error : Imprecise measurement of the explanatory vari-

ables is a violation of OLS3 and leads to biased and inconsistent estimates.

See the handout on “Instrumental Variables” for a potential solution.

Multicollinearity : Perfectly correlated explanatory variables violate

the identifiability assumption (OLS5 ) and their effects cannot be esti-

mated separately. The effects of highly but not perfectly correlated vari-

ables can in principle be separately estimated. However, the estimated

coefficients will be very imprecise, i.e. the standard errors will be very

large. If variables are (almost) perfectly correlated in all conceivable states

of the world, there is no theoretical meaning of separate effects. If mul-

ticollinearity is only a feature of a specific sample, collecting more data

may provide the necessary variation to estimate separate effects.

Heterogeneous effects: OLS1 assumes that the parameters βk are con-

stant across individuals i. However, in reality, effects βik likely differ

across i, i.e. the effects are heterogeneous and researchers seek to esti-

mate an average treatment effect ATEk = E(βik). Unfortunately, the

OLS estimator β̂k is in general not an unbiased estimator for ATEk. An

exception is the regression of a dependent variable yi on a single dummy

variable Di which takes value 1 for the treated group and 0 for the control

group: yi = β0 + β1Di + ui. β̂1 is then the difference between the aver-

age of the treated and the average of the control group and an unbiased

estimator for the ATE provided that Di is indendent of ui (OLS3b).
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Implementation in Stata 17

The multiple linear regression model is estimated by OLS with the regress

command. For example,

webuse auto.dta
regress mpg weight displacement

regresses the mileage of a car (mpg) on weight and displacement (see

annotated output next page). A constant is automatically added if not

suppressed by the option noconst

regress mpg weight displacement, noconst

Estimation based on a subsample is performed as

regress mpg weight displacement if weight>3000

where only cars heavier than 3000 lb are considered. Transformations of

variables are included with new variables

generate logmpg = log(mpg)
generate weight2 = weight^2
regress logmpg weight weight2 displacement

The Eicker-Huber-White covariance is reported with the option robust

regress mpg weight displacement, vce(robust)

F -tests for one or more restrictions are calculated with the post-estimation

command test. For example

test weight

tests H0 : β1 = 0 against HA : β1 6= 0, and

test weight displacement

tests H0 : β1 = 0 and β2 = 0 against HA : β1 6= 0 or β2 6= 0

New variables with residuals and fitted values are generated by

predict uhat if e(sample), resid
predict pricehat if e(sample)
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Implementation in R 4.3.1

The multiple linear regression model is estimated by OLS with the lm()

function. For example,

library(haven)
auto <- read_dta("http://www.stata-press.com/data/r17/auto.dta")
ols <- lm(mpg~weight+displacement, data=auto)
summary(ols)
confint(ols)

regresses the mileage of a car (mpg) on weight and displacement.

A constant is automatically added if not suppressed by -1

lm(mpg~weight+displacement-1, data=auto)

Estimation based on a subsample is performed as

lm(mpg~weight+displacement, subset=(weight>3000), data=auto)

where only cars heavier than 3000 lb are considered.

Tranformations of variables can be directly included in the formula

lm(log(mpg)~weight+I(weight^2)+ displacement, data=auto)

where transformations of explanatory variables must be wrapped in I().

The Eicker-Huber-White covariance is reported after estimation with

library(sandwich)
library(lmtest)
coeftest(ols, vcov=sandwich)

F -tests for one or more restrictions are calculated with the command

waldtest which also uses the two packages sandwich and lmtest

waldtest(ols, "weight", vcov=sandwich)

tests H0 : β1 = 0 against HA : β1 6= 0 with Eicker-Huber-White, and

waldtest(ols, .~.-weight-displacement, vcov=sandwich)

tests H0 : β1 = 0 and β2 = 0 against HA : β1 6= 0 or β2 6= 0.

Residuals and fitted values, respectively, are stored in vectors by

uhat <- resid(ols)
mpghat <- fitted(ols)
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