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Panel Data: Fixed and Random Effects

1 Introduction

In panel data, individuals (persons, firms, cities, ... ) are observed at

several points in time (days, years, before and after treatment, ...). This

handout focuses on panels with relatively few time periods (small T ) and

many individuals (large N).

This handout introduces the two basic models for the analysis of panel

data, the fixed effects model and the random effects model, and presents

consistent estimators for these two models. The handout does not cover

so-called dynamic panel data models.

Panel data are most useful when we suspect that the outcome variable

depends on explanatory variables which are not observable but correlated

with the observed explanatory variables. If such omitted variables are

constant over time, panel data estimators allow to consistently estimate

the effect of the observed explanatory variables.

2 The Econometric Model

Consider the multiple linear regression model for individual i = 1, ..., N

who is observed at several time periods t = 1, ..., T

yit = α+ x′itβ + z′iγ + ci + uit

where yit is the dependent variable, x′it is a K-dimensional row vector of

time-varying explanatory variables and z′i is a M -dimensional row vector

of time-invariant explanatory variables excluding the constant, α is the

intercept, β is a K-dimensional column vector of parameters, γ is a M -

dimensional column vector of parameters, ci is an individual-specific effect

and uit is an idiosyncratic error term.
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We will assume throughout this handout that each individual i is ob-

served in all time periods t. This is a so-called balanced panel. The

treatment of unbalanced panels is straightforward but tedious.

The T observations for individual i can be summarized as

yi =



yi1
...

yit
...

yiT


T×1

Xi =



x′i1
...

x′it
...

x′iT


T×K

Zi =



z′i
...

z′i
...

z′i


T×M

ui =



ui1
...

uit
...

uiT


T×1

and NT observations for all individuals and time periods as

y =



y1
...

yi
...

yN


NT×1

X =



X1

...

Xi

...

XN


NT×K

Z =



Z1

...

Zi

...

ZN


NT×M

u =



u1
...

ui
...

uN


NT×1

The data generation process (dgp) is described by:

PL1: Linearity

yit = α+ x′itβ + z′iγ + ci + uit where E[uit] = 0 and E[ci] = 0

The model is linear in parameters α, β, γ, effect ci and error uit.

PL2: Independence

{Xi, zi, yi}Ni=1 i.i.d. (independent and identically distributed)

The observations are independent across individuals but not necessarily

across time. This is guaranteed by random sampling of individuals.

PL3: Strict Exogeneity

E[uit|Xi, zi, ci] = 0 (mean independent)
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The idiosyncratic error term uit is assumed uncorrelated with the ex-

planatory variables of all past, current and future time periods of the

same individual. This is a strong assumption which e.g. rules out lagged

dependent variables. PL3 also assumes that the idiosyncratic error is

uncorrelated with the individual specific effect.

PL4: Error Variance

a) V [ui|Xi, zi, ci] = σ2
uI, σ2

u > 0 and finite

(homoscedastic and no serial correlation)

b) V [uit|Xi, zi, ci] = σ2
u,it > 0, finite and

Cov[uit, uis|Xi, zi, ci] = 0 ∀s 6= t (no serial correlation)

c) V [ui|Xi, zi, ci] = Ωu,i(Xi, zi) is p.d. and finite

The remaining assumptions are divided into two sets of assumptions: the

random effects model and the fixed effects model.

2.1 The Random Effects Model

In the random effects model, the individual-specific effect is a random

variable that is uncorrelated with the explanatory variables.

RE1: Unrelated effects

E[ci|Xi, zi] = 0

RE1 assumes that the individual-specific effect is a random variable that

is uncorrelated with the explanatory variables of all past, current and

future time periods of the same individual.

RE2: Effect Variance

a) V [ci|Xi, zi] = σ2
c <∞ (homoscedastic)

b) V [ci|Xi, zi] = σ2
c,i(Xi, zi) <∞ (heteroscedastic)

RE2a assumes constant variance of the individual specific effect.
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RE3: Identifiability

a) rank(W ) = K +M + 1 < NT and E[W ′iWi] = QWW is p.d. and

finite. The typical element w′it = [1 x′it z
′
i].

b) rank(W ) = K +M + 1 < NT and E[W ′iΩ
−1
v,iWi] = QWOW is p.d.

and finite. Ωv,i is defined below.

RE3 assumes that the regressors including a constant are not perfectly

collinear, that all regressors (but the constant) have non-zero variance

and not too many extreme values.

The random effects model can be written as

yit = α+ x′itβ + z′iγ + vit

where vit = ci +uit. Assuming PL2, PL4 and RE1 in the special versions

PL4a and RE2a leads to

Ωv = V [v|X,Z] =



Ωv,1 · · · 0 · · · 0
...

. . .
...

0 Ωv,i 0
...

. . .
...

0 · · · 0 · · · Ωv,N


NT×NT

with typical element

Ωv,i = V [vi|Xi, zi] =


σ2
v σ2

c · · · σ2
c

σ2
c σ2

v · · · σ2
c

...
...

. . .
...

σ2
c σ2

c · · · σ2
v


T×T

where σ2
v = σ2

c +σ2
u. This special case under PL4a and RE2a is therefore

called the equicorrelated random effects model.

2.2 The Fixed Effects Model

In the fixed effects model, the individual-specific effect is a random vari-

able that is allowed to be correlated with the explanatory variables.
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FE1: Related effects

–

FE1 explicitly states the absence of the unrelatedness assumption in RE1.

FE2: Effect Variance

–

FE2 explicitly states the absence of the assumption in RE2.

FE3: Identifiability

rank(Ẍ) = K < NT and E(Ẍ ′iẌi) is p.d. and finite

where the typical element ẍit = xit − x̄i and x̄i = 1/T
∑

t xit

FE3 assumes that the time-varying explanatory variables are not perfectly

collinear, that they have non-zero within-variance (i.e. variation over time

for a given individual) and not too many extreme values. Hence, xit

cannot include a constant or any time-invariant variables. Note that only

the parameters β but neither α nor γ are identifiable in the fixed effects

model.

3 Estimation with Pooled OLS

The pooled OLS estimator ignores the panel structure of the data and

simply estimates α, β and γ as α̂POLS

β̂POLS

γ̂POLS

 = (W ′W )
−1
W ′y

where W = [ιNT X Z] and ιNT is a NT × 1 vector of ones.

Random effects model : The pooled OLS estimator of α, β and γ is un-

biased under PL1, PL2, PL3, RE1, and RE3a in small samples. Addition-

ally assuming PL4 and normally distributed idiosyncratic and individual-

specific errors, it is normally distributed in small samples. It is consistent

and approximately normally distributed under PL1, PL2, PL3, PL4, RE1,
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and RE3a in samples with a large number of individuals (N →∞). How-

ever, the pooled OLS estimator is not efficient. More importantly, the

usual standard errors of the pooled OLS estimator are incorrect and tests

(t-, F -, z-, Wald-) based on them are not valid. Correct standard errors

can be estimated with the so-called cluster-robust covariance estimator

treating each individual as a cluster. Cluster-robust covariance matrix is

consistent when the number of clusters N → ∞. In practice we should

have at least 50 clusters (see the handout on “Clustering in the Linear

Model”).

Fixed effects model : The pooled OLS estimators of α, β and γ are

biased and inconsistent, because the variable ci is omitted and potentially

correlated with the other regressors.

4 Random Effects Estimation

The random effects estimator is the feasible generalized least squares

(GLS) estimator α̂RE

β̂RE

γ̂RE

 =
(
W ′Ω̂v

−1
W
)−1

W ′Ω̂v

−1
y.

where W = [ιNT X Z] and ιNT is a NT × 1 vector of ones.

The error covariance matrix Ωv is assumed block-diagonal with equicor-

related diagonal elements Ωv,i as in section 2.1 which depend on the two

unknown parameters σ2
v and σ2

c only. There are many different ways to

estimate these two parameters. For example,

σ̂2
v =

1

NT

T∑
t=1

N∑
i=1

v̂2it , σ̂2
c = σ̂2

v − σ̂2
u

where

σ̂2
u =

1

NT −N

T∑
t=1

N∑
i=1

(v̂it − v̂i)2
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and v̂it = yit−αPOLS−x′itβ̂POLS−z′iγ̂POLS and v̂i = 1/T
∑T

t=1 v̂it. The

degree of freedom correction in σ̂2
u is also asymptotically important when

N →∞.

Random effects model : We cannot establish small sample properties

for the RE estimator. The RE estimator is consistent and asymptotically

normally distributed under PL1 - PL4, RE1, RE2 and RE3b when the

number of individuals N → ∞ even if T is fixed. It can therefore be

approximated in samples with many individual observations N as α̂RE

β̂RE

γ̂RE

 A∼ N


 α

β

γ

 , Avar

 α̂RE

β̂RE

γ̂RE




Assuming the equicorrelated model (PL4a and RE2a), σ̂2
v and σ̂2

c are con-

sistent estimators of σ2
v and σ2

c , respectively. Then α̂RE , β̂RE and γ̂RE are

asymptotically efficient and the asymptotic variance can be consistently

estimated as

Âvar

 α̂RE

β̂RE

γ̂RE

 =
(
W ′Ω̂−1v W

)−1
Allowing for arbitrary conditional variances and for serial correlation in

Ωv,i (PL4c and RE2b), the asymptotic variance can be consistently es-

timated with the so-called cluster-robust covariance estimator treating

each individual as a cluster (see the handout on “Clustering in the Linear

Model”). In both cases, the usual tests (z-, Wald-) for large samples can

be performed.

In practice, we can rarely be sure about equicorrelated errors and

better always use cluster-robust standard errors for the RE estimator.

Fixed effects model : Under the assumptions of the fixed effects model

(FE1, i.e. RE1 violated), the random effects estimators of α, β and γ are

biased and inconsistent, because the variable ci is omitted and potentially

correlated with the other regressors.
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5 Fixed Effects Estimation

Subtracting time averages ȳi = 1/T
∑

t yit from the initial model

yit = α+ x′itβ + z′iγ + ci + uit

yields the within model

ÿit = ẍ′itβ + üit

where ÿit = yit − ȳi, ẍitk = xitk − x̄ik and üit = uit − ūi. Note that

the individual-specific effect ci, the intercept α and the time-invariant

regressors zi cancel.

The fixed effects estimator or within estimator of the slope coefficient

β estimates the within model by OLS

β̂FE =
(
Ẍ ′Ẍ

)−1
Ẍ ′ÿ

Note that the parameters α and γ are not estimated by the within esti-

mator.

Random effects model and fixed effects model : The fixed effects esti-

mator of β is unbiased under PL1, PL2, PL3, and FE3 in small samples.

Additionally assuming PL4 and normally distributed idiosyncratic errors,

it is normally distributed in small samples. Assuming homoscedastic er-

rors with no serial correlation (PL4a), the variance V
[
β̂FE |X

]
can be

unbiasedly estimated as

V̂
[
β̂FE |X

]
= σ̂2

u

(
Ẍ ′Ẍ

)−1
where σ̂2

u = ̂̈u′̂̈u/(NT−N−K) and ̂̈uit = ÿit−ẍ′itβ̂FE . Note the non-usual

degrees of freedom correction. The usual z- and F -tests can be performed.

The FE estimator is consistent and asymptotically normally distributed

under PL1 - PL4 and FE3 when the number of individuals N →∞ even

if T is fixed. It can therefore be approximated in samples with many

individual observations N as

β̂FE
A∼ N

(
β,Avar

[
β̂FE

])



9 Short Guides to Microeconometrics

Assuming homoscedastic errors with no serial correlation (PL4a), the

asymptotic variance can be consistently estimated as

Âvar
[
β̂FE

]
= σ̂2

u

(
Ẍ ′Ẍ

)−1
where σ̂2

u = ̂̈u′̂̈u/(NT −N).

Allowing for heteroscedasticity and serial correlation of unknown form

(PL4c), the asymptotic variance Avar[β̂k] can be consistently estimated

with the so-called cluster-robust covariance estimator treating each indi-

vidual as a cluster (see the handout on “Clustering in the Linear Model”).

In both cases, the usual tests (z-, Wald-) for large samples can be per-

formed.

In practice, the idiosyncratic errors are often serially correlated (vio-

lating PL4a) when T > 2. Bertrand, Duflo and Mullainathan (2004) show

that the usual standard errors of the fixed effects estimator are drastically

understated in the presence of serial correlation. It is therefore advisable

to always use cluster-robust standard errors for the fixed effects estimator.

6 Random Effects vs. Fixed Effects Estimation

The random effects model can be consistently estimated by both the RE

estimator or the FE estimator. We would prefer the RE estimator if we

can be sure that the individual-specific effect really is an unrelated effect

(RE1 ). This is usually tested by a (Durbin-Wu-)Hausman test. However,

the Hausman test is only valid under homoscedasticity and cannot include

time fixed effects.

The unrelatedness assumption (RE1 ) is better tested by running an

auxiliary regression (Wooldridge 2010, p. 332, eq. 10.88, Mundlak, 1978):

yit = α+ x′itβ + z′iγ + x′iλ+ δt + uit

where xi = 1/T
∑

t xit are the time averages of all time-varying regressors.

Include time fixed δt if they are included in the RE and FE estimation.
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A joint Wald-test on H0: λ = 0 tests RE1. Use cluster-robust standard

errors to allow for heteroscedasticity and serial correlation.

Note: Assumption RE1 is an extremely strong assumption and the FE

estimator is almost always much more convincing than the RE estimator.

Not rejecting RE1 does not mean accepting it. Interest in the effect of a

time-invariant variable is no sufficient reason to use the RE estimator.

7 Least Squares Dummy Variables Estimator (LSDV)

The least squares dummy variables (LSDV) estimator is pooled OLS in-

cluding a set of N−1 dummy variables which identify the individuals and

hence an additional N − 1 parameters. Note that one of the individual

dummies is dropped because we include a constant. Time-invariant ex-

planatory variables, zi, are dropped because they are perfectly collinear

with the individual dummy variables.

The LSDV estimator of β is numerically identical with the FE esti-

mator and therefore consistent under the same assumptions. The LSDV

estimators of the additional parameters for the individual-specific dummy

variables, however, are inconsistent as the number of parameters goes to

infinity as N → ∞. This so-called incidental parameters problem gener-

ally biases all parameters in non-linear fixed effects models like the probit

model.

8 First Difference Estimator

Subtracting the lagged value yi,t−1 from the initial model

yit = α+ x′itβ + z′iγ + ci + uit

yields the first-difference model

ẏit = ẋ′itβ + u̇it

where ẏit = yit−yi,t−1, ẋit = xit−xi,t−1 and u̇it = uit−ui,t−1. Note that
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the individual-specific effect ci, the intercept α and the time-invariant

regressors zi cancel. The first-difference estimator (FD) of the slope co-

efficient β estimates the first-difference model by OLS.

β̂FD =
(
Ẋ ′Ẋ

)−1
Ẋ ′ẏ

Note that the parameters α and γ are not estimated by the FD estimator.

In the special case T = 2, the FD estimator is numerically identical to the

FE estimator.

Random effects model and fixed effects model : The FD estimator is a

consistent estimator of β under the same assumptions as the FE estimator.

It is less efficient than the FE estimator if uit is not serially correlated

(PL4a).

9 Fixed Effects vs. First Difference Estimation

Given the fixed effects model (PL1, PL2, PL3, FE3 ), both the fixed ef-

fects and the first difference estimator of β are consistent. Hence, the two

estimators should be similar in large samples. In practice, however, the

two estimator often differ substantially. The reason for this is typically

a misspecification of the timing in the linear model. PL1 assumes that

changes in xit have only an instantaneous effect on yit at time t. In prac-

tice, effects often need several periods to materialize. Such patterns are

called dynamic treatment effects. In this situation, the first difference es-

timator will only pick up the instantaneous effect at time t while the fixed

effects estimator picks up an average of the dynamic treatment effects.

10 Time Fixed Effects

We often also suspect that there are time-specific effects δt which affect

all individuals in the same way

yit = α+ x′itβ + z′iγ + δt + ci + uit .
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We can estimate this extended model by including a dummy variable

for T − 1 time periods with one period serving as the reference period.

Assuming a fixed number of time periods T and the number of individuals

N → ∞, both the RE estimator and the FE estimator are consistent

using time dummy variables under above conditions. Estimation with

both individual fixed effects and time fixed effects is called two-way fixed

effects estimation.

11 Heterogeneous Effects

PL1 assumes that the parameters βk are constant across individuals i

and time t. However, in reality, effects likely differ across i and t, i.e.

the effects are heterogeneous and researchers seek to estimate an average

treatment effect ATEk = E[βitk]. Unfortunately, the linear panel estima-

tors discussed in this handout β̂k are in general not unbiased estimators

for ATEk (see e.g. de Chaisemartin and D’Haultfœuille, 2020).

An exception is the two-way fixed effects estimation in a panel with

two time periods t = 1, 2 with a dependent variable yit and a single ex-

planatory variable dit which takes the value di2 = 1 if an individual i is

treated in period 2 and dit = 0 otherwise: yit = β0 + β1dit + δt + ci + uit

with δ1 = 0. In this case, the two-way fixed effects estimator is equivalent

to the average first difference ∆yi2 = yi2 − yi1 in the treated group mi-

nus the average difference in the control group (differences-in-differences

estimator). β̂1 can be interpreted as the average treatment effect on the

treated (ATET ) even if the individual effects βit1 are heterogeneous pro-

vided that the expected change from period 1 to 2 in the treated group

would have been identical to the expected change in the control group

(common trends assumption).
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12 Implementation in Stata 17

Stata provides a series of commands that are especially designed for panel

data. See help xt for an overview.

Stata requires panel data in the so-called long form: there is one

line for every individual and every time observation. The very powerful

Stata command reshape helps transforming data into this format. Before

working with panel data commands, we have to tell Stata the variables

that identify the individual and the time period. For example, load data

and define individuals (variable idcode) and time periods (variable year)

webuse nlswork.dta
xtset idcode year

Stata provides descriptive statistics for panel data with the commands

xtdescribe
xtsum

The pooled OLS estimator with corrected standard errors is calculated

with the standard ols command regress:

generate ttl_exp2 = ttl_exp^2
reg ln_wage grade ttl_exp ttl_exp2, vce(cluster idcode)

where the vce option was used to report correct cluster-robust standard

errors. This command multiplies Âvar with (NT − 1)/(NT −M −K −
1) · N/(N − 1) as a small sample correction and uses N − 1 degrees of

freedom for t- and F-tests.

The random effects estimator is calculated by the Stata command

xtreg with the option re:

xtreg ln_wage grade ttl_exp ttl_exp2, re

Stata reports asymptotic z- and Wald-tests with random effects estima-

tion. Cluster-robust standard errors are reported with:

xtreg ln_wage grade ttl_exp ttl_exp2, re vce(cluster idcode)

Since version 10, Stata always assumes clustering with robust standard

errors in random and fixed effects estimations. So we could also just use
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xtreg ln_wage grade ttl_exp ttl_exp2, re vce(robust)

The fixed effects estimator is calculated by the Stata command xtreg

with the option fe:

xtreg ln_wage ttl_exp ttl_exp2, fe

Note that the effect of time-constant variables like grade is not identified

by the fixed effects estimator. The parameter reported as cons in the

Stata output is the average fixed effect 1/N
∑

i ci. This command uses

NT−N−K degrees of freedom for t- and F-tests. Cluster-robust standard

errors are reported with the vce option:

xtreg ln_wage ttl_exp ttl_exp2, fe vce(cluster idcode)

This command multiplies Âvar with (NT −1)/(NT −N−K) ·N/(N−1)

as a small correction and reports reports cluster-robust t- and F -tests

with N −1 degrees of freedom. The latter is particularly useful with large

T (see Stock and Watson, 2008).

The Hausman test is calculated by

xtreg ln_wage grade ttl_exp ttl_exp2, re
estimates store b_re
xtreg ln_wage ttl_exp ttl_exp2, fe
estimates store b_fe
hausman b_fe b_re, sigmamore

and the auxiliary regression version by

regress ln_wage grade ttl_exp ttl_exp2
tegen ttl_exp_mean = mean(ttl_exp) if e(sample), by(idcode)
egen ttl_exp2_mean = mean(ttl_exp2) if e(sample), by(idcode)
regress ln_wage grade ttl_exp ttl_exp2 ///

ttl_exp_mean ttl_exp2_mean, vce(cluster idcode)
test ttl_exp_mean ttl_exp2_mean
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13 Implementation in R 4.2.3

The R package plm provides a series of functions and data structures that

are especially designed for panel data.

The plm package works with data stored in a dataframe in the so-

called long form. Long form data means that there is one line for every

individual and every time observation. For example, load data

library(haven)
nlswork <- read_dta("https://www.stata-press.com/data/r17/nlswork.dta")

where individuals are defined by idcode and time periods by year.

Pooled OLS with cluster-robust standard errors can be estimated with

a standard regression and the packages lmtest and sandwich

pols1 <- lm(ln_wage~grade+ttl_exp+I(ttl_exp^2), data = nlswork)
library(lmtest)
library(sandwich)
coeftest(pols1, vcov = vcovCL, cluster = ~idcode)

This command multiplies Âvar with (NT−1)/(NT−M−K−1)·N/(N−1)

as a small sample correction.

Alternatively, pooled OLS with corrected standard errors is estimated

by the package plm with the function plm and its model option pooling:

library(plm)
pols2 <- plm(ln_wage~grade+ttl_exp+I(ttl_exp^2), model="pooling",

data = nlswork, index=c("idcode", "year"))
summary(pols2)
coeftest(pols2, vcov=vcovHC(pols2, cluster="group", type="HC1"))

where coeftest reports cluster-robust standard errors. cluster="group"

defines the clusters by the individual identifier set by the option index in

plm, i.e. the variable idcode in the example. This command multiplies

Âvar with (NT − 1)/(NT −M − K − 1) but not with N/(N − 1) and

uses NT −M −K − 1 degrees of freedom for t- and F-tests.

The random effects estimator is calculated by plm option random:

re <- plm(ln_wage~grade+ttl_exp+I(ttl_exp^2), model="random",
data = nlswork, index=c("idcode", "year"))

summary(re)
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Cluster-robust standard errors are reported with

coeftest(re, vcov=vcovHC(re, cluster="group", type="HC1"))

The fixed effects estimator is calculated by plm option within

fe <- plm(ln_wage ~ grade + ttl_exp + I(ttl_exp^2), model="within",
data=nlswork, index=c("idcode", "year"))

summary(fe)

Note that effects of time-constant variables like grade are not identified

by the fixed effects estimator. This command uses NT −N −K degrees

of freedom for t- and F-tests. Cluster-robust standard errors are given by:

coeftest(fe, vcov=vcovHC(fe, cluster="group", type="HC1"))

This command multiplies Âvar with (NT − 1)/(NT −K − 1) as a small

sample correction and uses NT − K − 1 degrees of freedom for t- and

F-tests.

The Hausman test is calculated by estimating RE and FE and then

comparing the estimates:

phtest(fe, re)



17 Short Guides to Microeconometrics

References

Introductory textbooks

Stock, James H. and Mark W. Watson (2020), Introduction to Economet-

rics, 4th Global ed., Pearson. Chapter 10.

Wooldridge, Jeffrey M. (2009), Introductory Econometrics: A Modern

Approach, 4th ed., South-Western Cengage Learning. Ch. 13 and 14.

Angrist, Joshua D. and Jörn-Steffen Pischke (2009), Mostly Harmless

Econometrics: An Empiricist’s Companion, Princeton University Press.

Chapter 5.

Advanced textbooks

Cameron, A. Colin and Pravin K. Trivedi (2005), Microeconometrics:

Methods and Applications, Cambridge University Press. Chapter 21.

Wooldridge, Jeffrey M. (2010), Econometric Analysis of Cross Section and

Panel Data, MIT Press. Chapter 10.

Articles

Manuel Arellano (1987), Computing Robust Standard Errors for Within-

Group Estimators, Oxford Bulletin of Economics and Statistics, 49,

431–434.

Bertrand, M., E. Duflo and S. Mullainathan (2004), How Much Should

We Trust Differences-in-Differences Estimates?, Quarterly Journal of

Economics, 119(1), 249–275.

de Chaisemartin, Clément and Xavier D’Haultfœuille (2020), Two-Way

Fixed Effects Estimators with Heterogeneous Treatment Effects, Amer-

ican Economic Review 2020, 110(9), 2964–2996.

Mundlak, Y. (1978), On the pooling of time series and cross section data,

Econometrica, 46, 69–85.

Stock, James H. and Mark W. Watson (2008), Heteroskedasticity-Robust

Standard Errors for Fixed Effects Panel Data Regression, Economet-

rica, 76(1), 155–174. [advanced]


	Introduction
	The Econometric Model
	The Random Effects Model
	The Fixed Effects Model

	Estimation with Pooled OLS
	Random Effects Estimation
	Fixed Effects Estimation
	Random Effects vs. Fixed Effects Estimation
	Least Squares Dummy Variables Estimator (LSDV)
	First Difference Estimator
	Fixed Effects vs. First Difference Estimation
	Time Fixed Effects
	Heterogeneous Effects
	Implementation in Stata 17
	Implementation in R 4.2.3

